These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
384 related articles for article (PubMed ID: 23727384)
1. Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation. Yin X; Thomas T; Zhang J Microvasc Res; 2013 Sep; 89():47-56. PubMed ID: 23727384 [TBL] [Abstract][Full Text] [Related]
2. Two-dimensional lattice Boltzmann study of red blood cell motion through microvascular bifurcation: cell deformability and suspending viscosity effects. Xiong W; Zhang J Biomech Model Mechanobiol; 2012 Mar; 11(3-4):575-83. PubMed ID: 21744014 [TBL] [Abstract][Full Text] [Related]
3. Microvascular blood flow resistance: Role of red blood cell migration and dispersion. Katanov D; Gompper G; Fedosov DA Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979 [TBL] [Abstract][Full Text] [Related]
4. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations. Hyakutake T; Nagai S Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286 [TBL] [Abstract][Full Text] [Related]
5. Effect of suspending viscosity on red blood cell dynamics and blood flows in microvessels. Zhang J Microcirculation; 2011 Oct; 18(7):562-73. PubMed ID: 21624001 [TBL] [Abstract][Full Text] [Related]
6. Numerical study on flows of red blood cells with liposome-encapsulated hemoglobin at microvascular bifurcation. Hyakutake T; Tominaga S; Matsumoto T; Yanase S J Biomech Eng; 2008 Feb; 130(1):011014. PubMed ID: 18298190 [TBL] [Abstract][Full Text] [Related]
7. Red blood cell distribution in a microvascular network with successive bifurcations. Ye T; Peng L; Li G Biomech Model Mechanobiol; 2019 Dec; 18(6):1821-1835. PubMed ID: 31161352 [TBL] [Abstract][Full Text] [Related]
8. Flow analysis of red blood cell through microvascular bifurcations. Amini JA; Fallahyan F Biomed Sci Instrum; 1997; 33():567-72. PubMed ID: 9731423 [TBL] [Abstract][Full Text] [Related]
9. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries. Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717 [TBL] [Abstract][Full Text] [Related]
14. Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method. Vahidkhah K; Fatouraee N Int J Numer Method Biomed Eng; 2012 Feb; 28(2):239-56. PubMed ID: 25099328 [TBL] [Abstract][Full Text] [Related]
16. Recovery of cell-free layer and wall shear stress profile symmetry downstream of an arteriolar bifurcation. Ye SS; Ju M; Kim S Microvasc Res; 2016 Jul; 106():14-23. PubMed ID: 26969106 [TBL] [Abstract][Full Text] [Related]
17. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels. Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440 [TBL] [Abstract][Full Text] [Related]
18. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels. Secomb TW; Styp-Rekowska B; Pries AR Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392 [TBL] [Abstract][Full Text] [Related]
19. Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel. Fujiwara H; Ishikawa T; Lima R; Matsuki N; Imai Y; Kaji H; Nishizawa M; Yamaguchi T J Biomech; 2009 May; 42(7):838-43. PubMed ID: 19268948 [TBL] [Abstract][Full Text] [Related]
20. Computational analysis of nitric oxide biotransport in a microvessel influenced by red blood cells. Wei Y; Mu L; Tang Y; Shen Z; He Y Microvasc Res; 2019 Sep; 125():103878. PubMed ID: 31051161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]