These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 23727691)

  • 1. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: laboratory studies and reactive transport modeling.
    Holden AA; Haque SE; Mayer KU; Ulrich AC
    J Contam Hydrol; 2013 Aug; 151():55-67. PubMed ID: 23727691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fate and transport of oil sand process-affected water into the underlying clay till: a field study.
    Abolfazlzadehdoshanbehbazari M; Birks SJ; Moncur MC; Ulrich AC
    J Contam Hydrol; 2013 Aug; 151():83-92. PubMed ID: 23752067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geochemical interactions between process-affected water from oil sands tailings ponds and North Alberta surficial sediments.
    Holden AA; Donahue RB; Ulrich AC
    J Contam Hydrol; 2011 Jan; 119(1-4):55-68. PubMed ID: 20980071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh.
    Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC
    Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of stable isotopes ((13)C/(12)C and (15)N/(14)N) to trace exposure to oil sands processed material in the Alberta oil sands region.
    Farwell AJ; Nero V; Ganshorn K; Leonhardt C; Ciborowski J; MacKinnon M; Dixon DG
    J Toxicol Environ Health A; 2009; 72(6):385-96. PubMed ID: 19199145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manganese and trace-metal mobility under reducing conditions following in situ oxidation of TCE by KMnO4: a laboratory column experiment.
    Loomer DB; Al TA; Banks VJ; Parker BL; Mayer KU
    J Contam Hydrol; 2011 Jan; 119(1-4):13-24. PubMed ID: 20889229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential for in situ chemical oxidation of acid extractable organics in oil sands process affected groundwater.
    Sohrabi V; Ross MS; Martin JW; Barker JF
    Chemosphere; 2013 Nov; 93(11):2698-703. PubMed ID: 24054134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Naphthenic acids speciation and removal during petroleum-coke adsorption and ozonation of oil sands process-affected water.
    Gamal El-Din M; Fu H; Wang N; Chelme-Ayala P; Pérez-Estrada L; Drzewicz P; Martin JW; Zubot W; Smith DW
    Sci Total Environ; 2011 Nov; 409(23):5119-25. PubMed ID: 21907388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer.
    Doerr NA; Ptacek CJ; Blowes DW
    J Contam Hydrol; 2005 Jun; 78(1-2):1-25. PubMed ID: 15949605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Petroleum coke and soft tailings sediment in constructed wetlands may contribute to the uptake of trace metals by algae and aquatic invertebrates.
    Baker LF; Ciborowski JJ; MacKinnon MD
    Sci Total Environ; 2012 Jan; 414():177-86. PubMed ID: 22119033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A detailed field-based evaluation of naphthenic acid mobility in groundwater.
    Oiffer AA; Barker JF; Gervais FM; Mayer KU; Ptacek CJ; Rudolph DL
    J Contam Hydrol; 2009 Sep; 108(3-4):89-106. PubMed ID: 19674813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processes controlling metal transport and retention as metal-contaminated groundwaters efflux through estuarine sediments.
    Simpson SL; Maher EJ; Jolley DF
    Chemosphere; 2004 Sep; 56(9):821-31. PubMed ID: 15261528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke.
    Pourrezaei P; Alpatova A; Khosravi K; Drzewicz P; Chen Y; Chelme-Ayala P; Gamal El-Din M
    J Environ Manage; 2014 Jun; 139():50-8. PubMed ID: 24681364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina).
    Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS
    Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remediation of a marine shore tailings deposit and the importance of water-rock interaction on element cycling in the coastal aquifer.
    Dold B; Diaby N; Spangenberg JE
    Environ Sci Technol; 2011 Jun; 45(11):4876-83. PubMed ID: 21563818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of thermodynamic and transport parameters of naphthenic acids and organic process chemicals in oil sand tailings pond water.
    Wang X; Robinson L; Wen Q; Kasperski KL
    Environ Sci Process Impacts; 2013 Jul; 15(7):1411-23. PubMed ID: 23736740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ozonation attenuates the steroidogenic disruptive effects of sediment free oil sands process water in the H295R cell line.
    He Y; Wiseman SB; Zhang X; Hecker M; Jones PD; El-Din MG; Martin JW; Giesy JP
    Chemosphere; 2010 Jul; 80(5):578-84. PubMed ID: 20466405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical fingerprinting of naphthenic acids and oil sands process waters-A review of analytical methods for environmental samples.
    Headley JV; Peru KM; Mohamed MH; Frank RA; Martin JW; Hazewinkel RR; Humphries D; Gurprasad NP; Hewitt LM; Muir DC; Lindeman D; Strub R; Young RF; Grewer DM; Whittal RM; Fedorak PM; Birkholz DA; Hindle R; Reisdorph R; Wang X; Kasperski KL; Hamilton C; Woudneh M; Wang G; Loescher B; Farwell A; Dixon DG; Ross M; Pereira Ados S; King E; Barrow MP; Fahlman B; Bailey J; McMartin DW; Borchers CH; Ryan CH; Toor NS; Gillis HM; Zuin L; Bickerton G; Mcmaster M; Sverko E; Shang D; Wilson LD; Wrona FJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(10):1145-63. PubMed ID: 23647107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production.
    Bonte M; van Breukelen BM; Stuyfzand PJ
    Water Res; 2013 Sep; 47(14):5088-100. PubMed ID: 23870436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.