BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23727802)

  • 21. Investigation of citrinin and monacolin K gene clusters variation among pigment producer Monascus species.
    Liu A; Juan Chen A; Liu B; Wei Q; Bai J; Hu Y
    Fungal Genet Biol; 2022 May; 160():103687. PubMed ID: 35315337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monascus rice products.
    Wang TH; Lin TF
    Adv Food Nutr Res; 2007; 53():123-59. PubMed ID: 17900498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Additional moisture during koji preparation contributes to the pigment production of red koji (Monascus-fermented rice) by influencing gene expression.
    Zeng C; Yoshizaki Y; Yin X; Wang Z; Okutsu K; Futagami T; Tamaki H; Takamine K
    J Food Sci; 2021 Mar; 86(3):969-976. PubMed ID: 33527354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of monacolin K, yellow pigments, and citrinin production capabilities of Monascus purpureus and Monascus ruber (Monascus pilosus).
    Lin TS; Chiu SH; Chen CC; Lin CH
    J Food Drug Anal; 2023 Mar; 31(1):85-94. PubMed ID: 37224553
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome shuffling improves pigment and other bioactive compound production in Monascus purpureus.
    Ghosh S; Dam B
    Appl Microbiol Biotechnol; 2020 Dec; 104(24):10451-10463. PubMed ID: 33165660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional food red yeast rice (RYR) for metabolic syndrome amelioration: a review on pros and cons.
    Patel S
    World J Microbiol Biotechnol; 2016 May; 32(5):87. PubMed ID: 27038957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The regulation mechanisms of soluble starch and glycerol for production of azaphilone pigments in Monascus purpureus FAFU618 as revealed by comparative proteomic and transcriptional analyses.
    Huang ZR; Zhou WB; Yang XL; Tong AJ; Hong JL; Guo WL; Li TT; Jia RB; Pan YY; Lin J; Lv XC; Liu B
    Food Res Int; 2018 Apr; 106():626-635. PubMed ID: 29579968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of yellow pigment production by intraspecific protoplast fusion of Monascus spp. yellow mutant (ade(-)) and white mutant (prototroph).
    Klinsupa W; Phansiri S; Thongpradis P; Yongsmith B; Pothiratana C
    J Biotechnol; 2016 Jan; 217():62-71. PubMed ID: 26562446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of the high-yield monacolin K strain from Monascus spp. and its submerged fermentation using different medicinal plants.
    Chen YP; Wu HT; Hwang IE; Chen FF; Yao JY; Yin Y; Chen MY; Liaw LL; Kuo YC
    Bot Stud; 2022 Jul; 63(1):20. PubMed ID: 35779152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Screening and identification of Monascus strains with high-yield monacolin K and undetectable citrinin by integration of HPLC analysis and pksCT and ctnA genes amplification.
    Li Z; Liu Y; Li Y; Lin F; Wu L
    J Appl Microbiol; 2020 Nov; 129(5):1410-1418. PubMed ID: 32357272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of mokF gene deletion and overexpression on the Monacolin K metabolism yields of Monascus purpureus.
    Zhang C; Chen M; Yang L; Cheng Y; Qin Y; Zang Y; Wang B; Sun B; Wang C
    Appl Microbiol Biotechnol; 2022 Apr; 106(8):3069-3080. PubMed ID: 35435455
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9 system is a suitable gene targeting editing tool to filamentous fungus Monascus pilosus.
    Gong Y; Li S; Liu Q; Chen F; Shao Y
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):154. PubMed ID: 38240803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elevated yield of monacolin K in Monascus purpureus by fungal elicitor and mutagenesis of UV and LiCl.
    Sun JL; Zou X; Liu AY; Xiao TF
    Biol Res; 2011; 44(4):377-82. PubMed ID: 22446602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Supplementary effect of whey components on the monascin productivity of Monascus sp.
    Huang Q; Miyaki N; Li Z; Takahashi Y; Ishizuka S; Hayakawa T; Wakamatsu JI; Kumura H
    J Sci Food Agric; 2023 Jun; 103(8):4234-4241. PubMed ID: 36732039
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of secondary metabolite biosynthesis in Monascus purpureus via cofactor metabolic engineering strategies.
    Liu J; Wu J; Cai X; Zhang S; Liang Y; Lin Q
    Food Microbiol; 2021 May; 95():103689. PubMed ID: 33397619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mrada3 is required for sexual reproduction and secondary metabolite production in industrial fungi Monascus strain.
    Gao J; Song C; Zhang J; Hu Y; Shao Y
    J Appl Microbiol; 2022 Aug; 133(2):591-606. PubMed ID: 35451171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using millet as substrate for efficient production of monacolin K by solid-state fermentation of Monascus ruber.
    Zhang BB; Xing HB; Jiang BJ; Chen L; Xu GR; Jiang Y; Zhang DY
    J Biosci Bioeng; 2018 Mar; 125(3):333-338. PubMed ID: 29157871
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of Monascus yellow pigments production by activating the cAMP signalling pathway in Monascus purpureus HJ11.
    Liu J; Du Y; Ma H; Pei X; Li M
    Microb Cell Fact; 2020 Dec; 19(1):224. PubMed ID: 33287814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monascus spp. and citrinin: Identification, selection of Monascus spp. isolates, occurrence, detection and reduction of citrinin during the fermentation of red fermented rice.
    Farawahida AH; Palmer J; Flint S
    Int J Food Microbiol; 2022 Oct; 379():109829. PubMed ID: 35863149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Promotion of monacolin K production in Monascus extractive fermentation: the variation in fungal morphology and in the expression levels of biosynthetic gene clusters.
    Yang X; Xiang L; Zhang C; Cao Y; Wang C
    J Sci Food Agric; 2021 Oct; 101(13):5652-5659. PubMed ID: 33740266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.