These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 23727825)

  • 21. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination.
    Shen XZ; Liu ZC; Xie SM; Guo J
    J Hazard Mater; 2009 Mar; 162(2-3):1193-8. PubMed ID: 18614280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Y(IO₃)₃ as a novel photocatalyst: synthesis, characterization, and highly efficient photocatalytic activity.
    Huang H; He Y; He R; Lin Z; Zhang Y; Wang S
    Inorg Chem; 2014 Aug; 53(15):8114-9. PubMed ID: 25055874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Novel in situ N-doped (BiO)2CO3 hierarchical microspheres self-assembled by nanosheets as efficient and durable visible light driven photocatalyst.
    Dong F; Sun Y; Fu M; Ho WK; Lee SC; Wu Z
    Langmuir; 2012 Jan; 28(1):766-73. PubMed ID: 22122119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The preparation of Zn2+-doped TiO(2) nanoparticles by sol-gel and solid phase reaction methods respectively and their photocatalytic activities.
    Liu G; Zhang X; Xu Y; Niu X; Zheng L; Ding X
    Chemosphere; 2005 Jun; 59(9):1367-71. PubMed ID: 15857649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Green synthetic approach for Ti3+ self-doped TiO(2-x) nanoparticles with efficient visible light photocatalytic activity.
    Liu X; Gao S; Xu H; Lou Z; Wang W; Huang B; Dai Y
    Nanoscale; 2013 Mar; 5(5):1870-5. PubMed ID: 23348572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of highly efficient C-doped TiO(2) photocatalyst and its photo-generated charge-transfer properties.
    Li H; Wang D; Fan H; Wang P; Jiang T; Xie T
    J Colloid Interface Sci; 2011 Feb; 354(1):175-80. PubMed ID: 21074165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradation of methylene blue using porous WO3, SiO2-WO3, and their Au-loaded analogs: adsorption and photocatalytic studies.
    DePuccio DP; Botella P; O'Rourke B; Landry CC
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1987-96. PubMed ID: 25549007
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and photocatalytic activity of N-doped NaTaO3 compounds calcined at low temperature.
    Liu DR; Wei CD; Xue B; Zhang XG; Jiang YS
    J Hazard Mater; 2010 Oct; 182(1-3):50-4. PubMed ID: 20591563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Visible-light-driven Cu(II)-(Sr(1-y)Na(y))(Ti(1-x)Mo(x))O3 photocatalysts based on conduction band control and surface ion modification.
    Qiu X; Miyauchi M; Yu H; Irie H; Hashimoto K
    J Am Chem Soc; 2010 Nov; 132(43):15259-67. PubMed ID: 20932016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of photocatalytic activity of nano-scale TiO2 particles co-doped by rare earth elements and heteropolyacids.
    Shi H; Zhang T; An T; Li B; Wang X
    J Colloid Interface Sci; 2012 Aug; 380(1):121-7. PubMed ID: 22633573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gel-hydrothermal synthesis of carbon and boron co-doped TiO2 and evaluating its photocatalytic activity.
    Wu Y; Xing M; Zhang J
    J Hazard Mater; 2011 Aug; 192(1):368-73. PubMed ID: 21664044
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis.
    Kumar S; Baruah A; Tonda S; Kumar B; Shanker V; Sreedhar B
    Nanoscale; 2014 May; 6(9):4830-42. PubMed ID: 24664127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium.
    Wang C; Ao Y; Wang P; Hou J; Qian J; Zhang S
    J Hazard Mater; 2010 Jun; 178(1-3):517-21. PubMed ID: 20149535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Ag3PO4/nitridized Sr2Nb2O7 composite photocatalyst with adjustable band structures for efficient elimination of gaseous organic pollutants under visible light irradiation.
    Guo J; Zhou H; Ouyang S; Kako T; Ye J
    Nanoscale; 2014 Jul; 6(13):7303-11. PubMed ID: 24847986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-pot solvothermal synthesis of ZnSe·xN2H4/GS and ZnSe/N-GS and enhanced visible-light photocatalysis.
    Liu B; Tian L; Wang Y
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8414-22. PubMed ID: 23945131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient photocatalytic degradation of rhodamine B over CdS sensitized SiO2-HNb3O8 under visible light.
    Li X; Zhong Y; Li Q; Wang L
    J Colloid Interface Sci; 2013 Sep; 405():226-32. PubMed ID: 23746680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and mechanism analysis of Mo-N-co-doped TiO2 nano-photocatalyst and its enhanced visible activity.
    Cheng X; Yu X; Xing Z
    J Colloid Interface Sci; 2012 Apr; 372(1):1-5. PubMed ID: 22326229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability.
    Luo M; Liu Y; Hu J; Liu H; Li J
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1813-21. PubMed ID: 22387732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visible light photocatalytic activity of Fe(3+)-doped ZnO nanoparticle prepared via sol-gel technique.
    Ba-Abbad MM; Kadhum AA; Mohamad AB; Takriff MS; Sopian K
    Chemosphere; 2013 Jun; 91(11):1604-11. PubMed ID: 23384541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity.
    Xiang Q; Yu J; Jaroniec M
    Phys Chem Chem Phys; 2011 Mar; 13(11):4853-61. PubMed ID: 21103562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.