These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 23728083)

  • 21. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity.
    Aswathy Aromal S; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():1-5. PubMed ID: 22743607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal nanoparticles via the atom-economy green approach.
    Kalidindi SB; Sanyal U; Jagirdar BR
    Inorg Chem; 2010 May; 49(9):3965-7. PubMed ID: 20369899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Observing reduction of 4-nitrobenzenthiol on gold nanoparticles in situ using surface-enhanced Raman spectroscopy.
    Ren X; Tan E; Lang X; You T; Jiang L; Zhang H; Yin P; Guo L
    Phys Chem Chem Phys; 2013 Sep; 15(34):14196-201. PubMed ID: 23873410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures.
    Xie W; Walkenfort B; Schlücker S
    J Am Chem Soc; 2013 Feb; 135(5):1657-60. PubMed ID: 23186150
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon nanotube/gold nanoparticle composite-coated membrane as a facile plasmon-enhanced interface for sensitive SERS sensing.
    Zhang K; Ji J; Fang X; Yan L; Liu B
    Analyst; 2015 Jan; 140(1):134-9. PubMed ID: 25347701
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation and catalytic activity of spherical composites with surfaces coated with gold nanoparticles.
    Chen X; Zhao D; An Y; Zhang Y; Cheng J; Wang B; Shi L
    J Colloid Interface Sci; 2008 Jun; 322(2):414-20. PubMed ID: 18440011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new route for the synthesis of polyhedral gold mesocages and shape effect in single-particle surface-enhanced Raman spectroscopy.
    Fang J; Lebedkin S; Yang S; Hahn H
    Chem Commun (Camb); 2011 May; 47(18):5157-9. PubMed ID: 21431212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasound assisted interfacial synthesis of gold nanocones.
    Zhang P; He J; Ma X; Gong J; Nie Z
    Chem Commun (Camb); 2013 Feb; 49(10):987-9. PubMed ID: 23254344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The synthesis of SERS-active gold nanoflower tags for in vivo applications.
    Xie J; Zhang Q; Lee JY; Wang DI
    ACS Nano; 2008 Dec; 2(12):2473-80. PubMed ID: 19206281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gold nanoparticle-loaded filter paper: a recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering.
    Zheng G; Polavarapu L; Liz-Marzán LM; Pastoriza-Santos I; Pérez-Juste J
    Chem Commun (Camb); 2015 Mar; 51(22):4572-5. PubMed ID: 25578310
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering.
    Yang Y; Tanemura M; Huang Z; Jiang D; Li ZY; Huang YP; Kawamura G; Yamaguchi K; Nogami M
    Nanotechnology; 2010 Aug; 21(32):325701. PubMed ID: 20639588
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Matter of age: growing anisotropic gold nanocrystals in organic media.
    Gaikwad AV; Verschuren P; Kinge S; Rothenberg G; Eiser E
    Phys Chem Chem Phys; 2008 Feb; 10(7):951-6. PubMed ID: 18259633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The synthesis of biocompatible and SERS-active gold nanoparticles using chitosan.
    Potara M; Maniu D; Astilean S
    Nanotechnology; 2009 Aug; 20(31):315602. PubMed ID: 19597258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. One-step synthesis of highly dispersed gold nanocrystals on silica spheres.
    Phonthammachai N; White TJ
    Langmuir; 2007 Nov; 23(23):11421-4. PubMed ID: 17915900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein-based SERS technology monitoring the chemical reactivity on an α-synuclein-mediated two-dimensional array of gold nanoparticles.
    Lee D; Choe YJ; Lee M; Jeong DH; Paik SR
    Langmuir; 2011 Nov; 27(21):12782-7. PubMed ID: 21942274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of highly branched gold nanodendrites with a narrow size distribution and tunable NIR and SERS using a multiamine surfactant.
    Jia W; Li J; Jiang L
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):6886-92. PubMed ID: 23820666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy.
    Jiang YX; Li JF; Wu DY; Yang ZL; Ren B; Hu JW; Chow YL; Tian ZQ
    Chem Commun (Camb); 2007 Nov; (44):4608-10. PubMed ID: 17989807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape.
    Lu L; Ai K; Ozaki Y
    Langmuir; 2008 Feb; 24(3):1058-63. PubMed ID: 18177060
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High yield seedless synthesis of high-quality gold nanocrystals with various shapes.
    Zhang J; Xi C; Feng C; Xia H; Wang D; Tao X
    Langmuir; 2014 Mar; 30(9):2480-9. PubMed ID: 24555832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film.
    Chang CC; Yang KH; Liu YC; Yu CC; Wu YH
    Analyst; 2012 Nov; 137(21):4943-50. PubMed ID: 22970430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.