BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 23728197)

  • 1. A multiplexed microfluidic platform for rapid antibiotic susceptibility testing.
    Mohan R; Mukherjee A; Sevgen SE; Sanpitakseree C; Lee J; Schroeder CM; Kenis PJ
    Biosens Bioelectron; 2013 Nov; 49():118-25. PubMed ID: 23728197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid antibiotic susceptibility testing in a microfluidic pH sensor.
    Tang Y; Zhen L; Liu J; Wu J
    Anal Chem; 2013 Mar; 85(5):2787-94. PubMed ID: 23360389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform.
    Kaushik AM; Hsieh K; Chen L; Shin DJ; Liao JC; Wang TH
    Biosens Bioelectron; 2017 Nov; 97():260-266. PubMed ID: 28609716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput microfluidic system for long-term bacterial colony monitoring and antibiotic testing in zero-flow environments.
    Sun P; Liu Y; Sha J; Zhang Z; Tu Q; Chen P; Wang J
    Biosens Bioelectron; 2011 Jan; 26(5):1993-9. PubMed ID: 20880691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid screening of antibiotic toxicity in an automated microdroplet system.
    Churski K; Kaminski TS; Jakiela S; Kamysz W; Baranska-Rybak W; Weibel DB; Garstecki P
    Lab Chip; 2012 May; 12(9):1629-37. PubMed ID: 22422170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel concentration gradient microfluidic chip for high-throughput antibiotic susceptibility testing of bacteria.
    Sun J; Ren Y; Ji J; Guo Y; Sun X
    Anal Bioanal Chem; 2021 Feb; 413(4):1127-1136. PubMed ID: 33420534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene nano-ink biosensor arrays on a microfluidic paper for multiplexed detection of metabolites.
    Labroo P; Cui Y
    Anal Chim Acta; 2014 Feb; 813():90-6. PubMed ID: 24528665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid antibiotic efficacy screening with aluminum oxide nanoporous membrane filter-chip and optical detection system.
    Tsou PH; Sreenivasappa H; Hong S; Yasuike M; Miyamoto H; Nakano K; Misawa T; Kameoka J
    Biosens Bioelectron; 2010 Sep; 26(1):289-94. PubMed ID: 20650629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemostat-like microfluidic platform for highly sensitive detection of heavy metal ions using microbial biosensors.
    Kim M; Lim JW; Kim HJ; Lee SK; Lee SJ; Kim T
    Biosens Bioelectron; 2015 Mar; 65():257-64. PubMed ID: 25461167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asynchronous magnetic bead rotation (AMBR) biosensor in microfluidic droplets for rapid bacterial growth and susceptibility measurements.
    Sinn I; Kinnunen P; Albertson T; McNaughton BH; Newton DW; Burns MA; Kopelman R
    Lab Chip; 2011 Aug; 11(15):2604-11. PubMed ID: 21666890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-cell-reporter-gene-based biosensing systems on a compact disk microfluidics platform.
    Rothert A; Deo SK; Millner L; Puckett LG; Madou MJ; Daunert S
    Anal Biochem; 2005 Jul; 342(1):11-9. PubMed ID: 15958175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system.
    Choi J; Jung YG; Kim J; Kim S; Jung Y; Na H; Kwon S
    Lab Chip; 2013 Jan; 13(2):280-7. PubMed ID: 23172338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Color-Coded Droplets and Microscopic Image Analysis for Multiplexed Antibiotic Susceptibility Testing.
    Jeong Y; Jang H; Kang J; Nam J; Shin K; Kwon S; Choi J
    Biosensors (Basel); 2021 Aug; 11(8):. PubMed ID: 34436085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel microbead-based microfluidic device for rapid bacterial identification and antibiotic susceptibility testing.
    He J; Mu X; Guo Z; Hao H; Zhang C; Zhao Z; Wang Q
    Eur J Clin Microbiol Infect Dis; 2014 Dec; 33(12):2223-30. PubMed ID: 24996540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microdevice for rapid, monoplex and colorimetric detection of foodborne pathogens using a centrifugal microfluidic platform.
    Sayad A; Ibrahim F; Mukim Uddin S; Cho J; Madou M; Thong KL
    Biosens Bioelectron; 2018 Feb; 100():96-104. PubMed ID: 28869845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a microfluidics biosensor for agarose-bead immobilized Escherichia coli bioreporter cells for arsenite detection in aqueous samples.
    Buffi N; Merulla D; Beutier J; Barbaud F; Beggah S; van Lintel H; Renaud P; van der Meer JR
    Lab Chip; 2011 Jul; 11(14):2369-77. PubMed ID: 21614381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Innovative antimicrobial susceptibility testing method using surface plasmon resonance.
    Chiang YL; Lin CH; Yen MY; Su YD; Chen SJ; Chen HF
    Biosens Bioelectron; 2009 Mar; 24(7):1905-10. PubMed ID: 19027285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial susceptibility assays based on the quantification of bacterial lipopolysaccharides via a label free lectin biosensor.
    Ma F; Rehman A; Sims M; Zeng X
    Anal Chem; 2015 Apr; 87(8):4385-93. PubMed ID: 25735847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics.
    Cira NJ; Ho JY; Dueck ME; Weibel DB
    Lab Chip; 2012 Mar; 12(6):1052-9. PubMed ID: 22193301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract.
    Wu N; Zhu Y; Brown S; Oakeshott J; Peat TS; Surjadi R; Easton C; Leech PW; Sexton BA
    Lab Chip; 2009 Dec; 9(23):3391-8. PubMed ID: 19904406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.