These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23728351)

  • 1. Determination of kinetics parameters of the main glow peaks for KMgF3:Lu and LiF:Mg phosphors after long-term high temperature storage.
    González PR; Furetta C; Marcazzó J; Cruz-Zaragoza E; Pérez Cruz L
    Appl Radiat Isot; 2013 Sep; 79():67-72. PubMed ID: 23728351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of heating rate on MgB
    González PR; Azorín J; Furetta C
    Appl Radiat Isot; 2022 May; 183():110153. PubMed ID: 35228135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heating rate effect on thermoluminescence glow curves of LiF:Mg,Cu,P+PTFE phosphor.
    Cruz-Zaragoza E; González PR; Azorín J; Furetta C
    Appl Radiat Isot; 2011 Oct; 69(10):1369-73. PubMed ID: 21683603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the glow curves obtained from LiF:Mg,Cu,Na,Si TL material using the general order kinetics model.
    Lee JI; Kim JL; Chang SY; Nam YM; Chung KS; Choe HS
    Radiat Prot Dosimetry; 2002; 100(1-4):341-4. PubMed ID: 12382893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic parameters of thermally stimulated light emission phenomenon in CaF
    González PR; Cruz-Zaragoza E; Furetta C
    Appl Radiat Isot; 2016 Nov; 117():118-122. PubMed ID: 26778763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computer program for the deconvolution of thermoluminescence glow curves.
    Chung KS; Choe HS; Lee JI; Kim JL; Chang SY
    Radiat Prot Dosimetry; 2005; 115(1-4):343-9. PubMed ID: 16381744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of the TL phenomenon in LiF:Mg irradiated to different dose of gamma radiation of 60Co using two different programs of deconvolution.
    González PR; Gutiérrez-Tapia C; Flores-Llamas H
    Appl Radiat Isot; 2014 Jan; 83 Pt C():200-3. PubMed ID: 23849226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoluminescence kinetic parameters of different amount La-doped ZnB₂O₄.
    Kucuk N; Gozel AH; Yüksel M; Dogan T; Topaksu M
    Appl Radiat Isot; 2015 Oct; 104():186-91. PubMed ID: 26186155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and dosimetry features of novel sensitive thermoluminescent phosphor of LiF doped with Mg and Dy impurities.
    Sadeghi E; Zahedifar M; Shoushtari MK
    Appl Radiat Isot; 2018 Jun; 136():111-117. PubMed ID: 29494943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermoluminescence glow curve deconvolution for discrete and continuous trap distributions.
    Benavente JF; Gómez-Ros JM; Romero AM
    Appl Radiat Isot; 2019 Nov; 153():108843. PubMed ID: 31404764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New modified expressions for isothermal decay of Teflon embedded LiF:Mg,Cu,P and BaSO4:Eu phosphors.
    González PR; Furetta C; Cruz-Zaragoza E
    Appl Radiat Isot; 2011 Feb; 69(2):511-5. PubMed ID: 21074446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of thermoluminescence kinetic parameters of polymer pencil lead graphite under photon exposures.
    Khandaker MU; Mat Nawi SN; Bradley DA; Lam SE; Abdul Sani SF; Sulieman A
    Appl Radiat Isot; 2021 Aug; 174():109757. PubMed ID: 33990033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoluminescence glow-curve deconvolution using analytical expressions: A unified presentation.
    Peng J; Kitis G; Sadek AM; Karsu Asal EC; Li Z
    Appl Radiat Isot; 2021 Feb; 168():109440. PubMed ID: 33268224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation of the 100 keV X-ray dose response of the high-temperature thermoluminescence in LiF:Mg,Ti (TLD-100): theoretical interpretation using the unified interaction model.
    Livingstone J; Horowitz YS; Oster L; Datz H; Lerch M; Rosenfeld A; Horowitz A
    Radiat Prot Dosimetry; 2010 Mar; 138(4):320-33. PubMed ID: 19934115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterisation of BaSo4:Eu thermoluminescence phosphor.
    Annalakshmi O; Jose MT; Madhusoodanan U
    Radiat Prot Dosimetry; 2012 Jun; 150(2):127-33. PubMed ID: 22223718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An investigation of the dosimetric and kinetic properties of sand using ESR and TL techniques.
    Aydaş C; Aydın T
    Appl Radiat Isot; 2015 Jul; 101():65-74. PubMed ID: 25839157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the possibility of using commercial software packages for thermoluminescence glow curve deconvolution analysis.
    Pagonis V; Kitis G
    Radiat Prot Dosimetry; 2002; 101(1-4):93-8. PubMed ID: 12382713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the BeO thermoluminescent glow curve by the deconvolution method.
    Baltezar RM; Nieto JA
    Appl Radiat Isot; 2019 Aug; 150():53-56. PubMed ID: 31121488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Thermoluminescence Glow Curves using Derivatives of different Orders.
    Karmakar M; Bhattacharyya S; Sarkar A; Mazumdar PS; Singh SD
    Radiat Prot Dosimetry; 2017 Aug; 175(4):493-502. PubMed ID: 28096312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The analysis of thermoluminescent glow peaks of natural calcite after beta irradiation.
    Yildirim RG; Kafadar VE; Yazici AN; Gün E
    Radiat Prot Dosimetry; 2012 Sep; 151(3):397-402. PubMed ID: 22355170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.