These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 23728458)
1. Preparation of aqueous colloidal mesostructured and mesoporous silica nanoparticles with controlled particle size in a very wide range from 20 nm to 700 nm. Yamada H; Urata C; Ujiie H; Yamauchi Y; Kuroda K Nanoscale; 2013 Jul; 5(13):6145-53. PubMed ID: 23728458 [TBL] [Abstract][Full Text] [Related]
2. A multifunctional role of trialkylbenzenes for the preparation of aqueous colloidal mesostructured/mesoporous silica nanoparticles with controlled pore size, particle diameter, and morphology. Yamada H; Ujiie H; Urata C; Yamamoto E; Yamauchi Y; Kuroda K Nanoscale; 2015 Dec; 7(46):19557-67. PubMed ID: 26538159 [TBL] [Abstract][Full Text] [Related]
3. Critical roles of cationic surfactants in the preparation of colloidal mesostructured silica nanoparticles: control of mesostructure, particle size, and dispersion. Yamada H; Urata C; Higashitamori S; Aoyama Y; Yamauchi Y; Kuroda K ACS Appl Mater Interfaces; 2014 Mar; 6(5):3491-500. PubMed ID: 24471488 [TBL] [Abstract][Full Text] [Related]
4. Facile synthesis of size controllable dendritic mesoporous silica nanoparticles. Yu YJ; Xing JL; Pang JL; Jiang SH; Lam KF; Yang TQ; Xue QS; Zhang K; Wu P ACS Appl Mater Interfaces; 2014 Dec; 6(24):22655-65. PubMed ID: 25454255 [TBL] [Abstract][Full Text] [Related]
5. Dialysis process for the removal of surfactants to form colloidal mesoporous silica nanoparticles. Urata C; Aoyama Y; Tonegawa A; Yamauchi Y; Kuroda K Chem Commun (Camb); 2009 Sep; (34):5094-6. PubMed ID: 20448957 [TBL] [Abstract][Full Text] [Related]
6. Formation mechanism and size control in one-pot synthesis of mercapto-silica colloidal spheres. Lu Z; Sun L; Nguyen K; Gao C; Yin Y Langmuir; 2011 Apr; 27(7):3372-80. PubMed ID: 21355589 [TBL] [Abstract][Full Text] [Related]
8. Functionalization of colloidal mesoporous silica by metalorganic reagents. Kecht J; Bein T Langmuir; 2008 Dec; 24(24):14209-14. PubMed ID: 19360945 [TBL] [Abstract][Full Text] [Related]
9. Size-controlled synthesis of colloidal platinum nanoparticles and their activity for the electrocatalytic oxidation of carbon monoxide. Tang Z; Geng D; Lu G J Colloid Interface Sci; 2005 Jul; 287(1):159-66. PubMed ID: 15914161 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of mesoporous silica nanobamboo with highly dispersed tungsten carbide nanoparticles. Huang Y; Deng F; Ni C; Chen JG; Vlachos DG Dalton Trans; 2012 Jun; 41(23):6914-8. PubMed ID: 22532100 [TBL] [Abstract][Full Text] [Related]
11. Rigid nanoscopic containers for highly dispersed, stable metal and bimetal nanoparticles with both size and site control. Wang C; Zhu G; Li J; Cai X; Wei Y; Zhang D; Qiu S Chemistry; 2005 Aug; 11(17):4975-82. PubMed ID: 15973750 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method. Yamamoto E; Mori S; Shimojima A; Wada H; Kuroda K Nanoscale; 2017 Feb; 9(7):2464-2470. PubMed ID: 27824195 [TBL] [Abstract][Full Text] [Related]
13. Physical state and dissolution of ibuprofen formulated by co-spray drying with mesoporous silica: effect of pore and particle size. Shen SC; Ng WK; Chia L; Hu J; Tan RB Int J Pharm; 2011 May; 410(1-2):188-95. PubMed ID: 21419202 [TBL] [Abstract][Full Text] [Related]
14. Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures. Dong W; Sun Y; Lee CW; Hua W; Lu X; Shi Y; Zhang S; Chen J; Zhao D J Am Chem Soc; 2007 Nov; 129(45):13894-904. PubMed ID: 17941637 [TBL] [Abstract][Full Text] [Related]
15. Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: synthesis, characterization, and catalytic properties. Song H; Rioux RM; Hoefelmeyer JD; Komor R; Niesz K; Grass M; Yang P; Somorjai GA J Am Chem Soc; 2006 Mar; 128(9):3027-37. PubMed ID: 16506784 [TBL] [Abstract][Full Text] [Related]
16. Effect of size on the cellular endocytosis and controlled release of mesoporous silica nanoparticles for intracellular delivery. Gan Q; Dai D; Yuan Y; Qian J; Sha S; Shi J; Liu C Biomed Microdevices; 2012 Apr; 14(2):259-70. PubMed ID: 22124885 [TBL] [Abstract][Full Text] [Related]
17. A universal approach to the preparation of colloidal mesoporous platinum nanoparticles with controlled particle sizes in a wide range from 20 nm to 200 nm. Li C; Imura M; Yamauchi Y Phys Chem Chem Phys; 2014 May; 16(19):8787-90. PubMed ID: 24695823 [TBL] [Abstract][Full Text] [Related]
18. Extension of size of monodisperse silica nanospheres and their well-ordered assembly. Watanabe R; Yokoi T; Kobayashi E; Otsuka Y; Shimojima A; Okubo T; Tatsumi T J Colloid Interface Sci; 2011 Aug; 360(1):1-7. PubMed ID: 21570081 [TBL] [Abstract][Full Text] [Related]
19. Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. Gao F; Botella P; Corma A; Blesa J; Dong L J Phys Chem B; 2009 Feb; 113(6):1796-804. PubMed ID: 19152258 [TBL] [Abstract][Full Text] [Related]
20. Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays. Hartlen KD; Athanasopoulos AP; Kitaev V Langmuir; 2008 Mar; 24(5):1714-20. PubMed ID: 18225928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]