BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 23728458)

  • 1. Preparation of aqueous colloidal mesostructured and mesoporous silica nanoparticles with controlled particle size in a very wide range from 20 nm to 700 nm.
    Yamada H; Urata C; Ujiie H; Yamauchi Y; Kuroda K
    Nanoscale; 2013 Jul; 5(13):6145-53. PubMed ID: 23728458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multifunctional role of trialkylbenzenes for the preparation of aqueous colloidal mesostructured/mesoporous silica nanoparticles with controlled pore size, particle diameter, and morphology.
    Yamada H; Ujiie H; Urata C; Yamamoto E; Yamauchi Y; Kuroda K
    Nanoscale; 2015 Dec; 7(46):19557-67. PubMed ID: 26538159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical roles of cationic surfactants in the preparation of colloidal mesostructured silica nanoparticles: control of mesostructure, particle size, and dispersion.
    Yamada H; Urata C; Higashitamori S; Aoyama Y; Yamauchi Y; Kuroda K
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3491-500. PubMed ID: 24471488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis of size controllable dendritic mesoporous silica nanoparticles.
    Yu YJ; Xing JL; Pang JL; Jiang SH; Lam KF; Yang TQ; Xue QS; Zhang K; Wu P
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22655-65. PubMed ID: 25454255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dialysis process for the removal of surfactants to form colloidal mesoporous silica nanoparticles.
    Urata C; Aoyama Y; Tonegawa A; Yamauchi Y; Kuroda K
    Chem Commun (Camb); 2009 Sep; (34):5094-6. PubMed ID: 20448957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation mechanism and size control in one-pot synthesis of mercapto-silica colloidal spheres.
    Lu Z; Sun L; Nguyen K; Gao C; Yin Y
    Langmuir; 2011 Apr; 27(7):3372-80. PubMed ID: 21355589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of Sub-50 nm Colloidal Monodispersed Hollow Siloxane-Based Nanoparticles with Controlled Shell Structures.
    Watanabe T; Yamamoto E; Uchida S; Cheng L; Wada H; Shimojima A; Kuroda K
    Langmuir; 2020 Nov; 36(46):13833-13842. PubMed ID: 33190504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functionalization of colloidal mesoporous silica by metalorganic reagents.
    Kecht J; Bein T
    Langmuir; 2008 Dec; 24(24):14209-14. PubMed ID: 19360945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-controlled synthesis of colloidal platinum nanoparticles and their activity for the electrocatalytic oxidation of carbon monoxide.
    Tang Z; Geng D; Lu G
    J Colloid Interface Sci; 2005 Jul; 287(1):159-66. PubMed ID: 15914161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of mesoporous silica nanobamboo with highly dispersed tungsten carbide nanoparticles.
    Huang Y; Deng F; Ni C; Chen JG; Vlachos DG
    Dalton Trans; 2012 Jun; 41(23):6914-8. PubMed ID: 22532100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rigid nanoscopic containers for highly dispersed, stable metal and bimetal nanoparticles with both size and site control.
    Wang C; Zhu G; Li J; Cai X; Wei Y; Zhang D; Qiu S
    Chemistry; 2005 Aug; 11(17):4975-82. PubMed ID: 15973750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method.
    Yamamoto E; Mori S; Shimojima A; Wada H; Kuroda K
    Nanoscale; 2017 Feb; 9(7):2464-2470. PubMed ID: 27824195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical state and dissolution of ibuprofen formulated by co-spray drying with mesoporous silica: effect of pore and particle size.
    Shen SC; Ng WK; Chia L; Hu J; Tan RB
    Int J Pharm; 2011 May; 410(1-2):188-95. PubMed ID: 21419202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures.
    Dong W; Sun Y; Lee CW; Hua W; Lu X; Shi Y; Zhang S; Chen J; Zhao D
    J Am Chem Soc; 2007 Nov; 129(45):13894-904. PubMed ID: 17941637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: synthesis, characterization, and catalytic properties.
    Song H; Rioux RM; Hoefelmeyer JD; Komor R; Niesz K; Grass M; Yang P; Somorjai GA
    J Am Chem Soc; 2006 Mar; 128(9):3027-37. PubMed ID: 16506784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of size on the cellular endocytosis and controlled release of mesoporous silica nanoparticles for intracellular delivery.
    Gan Q; Dai D; Yuan Y; Qian J; Sha S; Shi J; Liu C
    Biomed Microdevices; 2012 Apr; 14(2):259-70. PubMed ID: 22124885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A universal approach to the preparation of colloidal mesoporous platinum nanoparticles with controlled particle sizes in a wide range from 20 nm to 200 nm.
    Li C; Imura M; Yamauchi Y
    Phys Chem Chem Phys; 2014 May; 16(19):8787-90. PubMed ID: 24695823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extension of size of monodisperse silica nanospheres and their well-ordered assembly.
    Watanabe R; Yokoi T; Kobayashi E; Otsuka Y; Shimojima A; Okubo T; Tatsumi T
    J Colloid Interface Sci; 2011 Aug; 360(1):1-7. PubMed ID: 21570081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA.
    Gao F; Botella P; Corma A; Blesa J; Dong L
    J Phys Chem B; 2009 Feb; 113(6):1796-804. PubMed ID: 19152258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile preparation of highly monodisperse small silica spheres (15 to >200 nm) suitable for colloidal templating and formation of ordered arrays.
    Hartlen KD; Athanasopoulos AP; Kitaev V
    Langmuir; 2008 Mar; 24(5):1714-20. PubMed ID: 18225928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.