BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23728496)

  • 1. Metabolic regulation and chromosomal localization of carbaryl degradation pathway in Pseudomonas sp. strains C4, C5 and C6.
    Singh R; Trivedi VD; Phale PS
    Arch Microbiol; 2013 Aug; 195(8):521-35. PubMed ID: 23728496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of carbaryl via 1,2-dihydroxynaphthalene by soil isolates Pseudomonas sp. strains C4, C5, and C6.
    Swetha VP; Phale PS
    Appl Environ Microbiol; 2005 Oct; 71(10):5951-6. PubMed ID: 16204509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into functional and evolutionary analysis of carbaryl metabolic pathway from Pseudomonas sp. strain C5pp.
    Trivedi VD; Jangir PK; Sharma R; Phale PS
    Sci Rep; 2016 Dec; 6():38430. PubMed ID: 27924916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2.
    Fuenmayor SL; Wild M; Boyes AL; Williams PA
    J Bacteriol; 1998 May; 180(9):2522-30. PubMed ID: 9573207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbaryl as a Carbon and Nitrogen Source: an Inducible Methylamine Metabolic Pathway at the Biochemical and Molecular Levels in
    Kamini ; Sharma R; Punekar NS; Phale PS
    Appl Environ Microbiol; 2018 Dec; 84(24):. PubMed ID: 30315077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmid-borne Tn5 insertion mutation resulting in accumulation of gentisate from salicylate.
    Monticello DJ; Bakker D; Schell M; Finnerty WR
    Appl Environ Microbiol; 1985 Apr; 49(4):761-4. PubMed ID: 2988437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two LysR Family Transcriptional Regulators, McbH and McbN, Activate the Operons Responsible for the Midstream and Downstream Pathways, Respectively, of Carbaryl Degradation in Pseudomonas sp. Strain XWY-1.
    Ke Z; Zhu Q; Gao S; Zhang M; Jiang M; Ren Y; Liu Y; Zhou Y; Qiu J; Hong Q
    Appl Environ Microbiol; 2022 Feb; 88(4):e0206021. PubMed ID: 34936841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into metabolism and sodium chloride adaptability of carbaryl degrading halotolerant Pseudomonas sp. strain C7.
    Trivedi VD; Bharadwaj A; Varunjikar MS; Singha AK; Upadhyay P; Gautam K; Phale PS
    Arch Microbiol; 2017 Aug; 199(6):907-916. PubMed ID: 28374062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The metabolism of carbaryl by three bacterial isolates, Pseudomonas spp. (NCIB 12042 & 12043) and Rhodococcus sp. (NCIB 12038) from garden soil.
    Larkin MJ; Day MJ
    J Appl Bacteriol; 1986 Mar; 60(3):233-42. PubMed ID: 3086270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compartmentalization of the Carbaryl Degradation Pathway: Molecular Characterization of Inducible Periplasmic Carbaryl Hydrolase from Pseudomonas spp.
    Kamini ; Shetty D; Trivedi VD; Varunjikar M; Phale PS
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29079626
    [No Abstract]   [Full Text] [Related]  

  • 11. Evidence for isofunctional enzymes used in m-cresol and 2,5-xylenol degradation via the gentisate pathway in Pseudomonas alcaligenes.
    Poh CL; Bayly RC
    J Bacteriol; 1980 Jul; 143(1):59-69. PubMed ID: 6995451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of 1-naphthol-2-hydroxylase from carbaryl-degrading Pseudomonas strain c4.
    Swetha VP; Basu A; Phale PS
    J Bacteriol; 2007 Apr; 189(7):2660-6. PubMed ID: 17237179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of isofunctional enzymes in Pseudomonas alcaligenes mutants defective in the gentisate pathway.
    Poh CL; Bayly RC
    J Appl Bacteriol; 1988 May; 64(5):451-8. PubMed ID: 3170385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrolase CehA and a Novel Two-Component 1-Naphthol Hydroxylase CehC1C2 are Responsible for the Two Initial Steps of Carbaryl Degradation in
    Zhou Y; Ke Z; Ye H; Hong M; Xu Y; Zhang M; Jiang W; Hong Q
    J Agric Food Chem; 2020 Dec; 68(50):14739-14747. PubMed ID: 33264024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4.
    Grund E; Denecke B; Eichenlaub R
    Appl Environ Microbiol; 1992 Jun; 58(6):1874-7. PubMed ID: 1622263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmid- and chromosome-mediated dissimilation of naphthalene and salicylate in Pseudomonas putida PMD-1.
    Zuniga MC; Durham DR; Welch RA
    J Bacteriol; 1981 Sep; 147(3):836-43. PubMed ID: 7275935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1-naphthol 2-hydroxylase from Pseudomonas sp. strain C6: purification, characterization and chemical modification studies.
    Sah S; Phale PS
    Biodegradation; 2011 Jun; 22(3):517-26. PubMed ID: 20949369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of two plasmids in the degradation of carbaryl by Arthrobacter sp. strain RC100.
    Hayatsu M; Hirano M; Nagata T
    Appl Environ Microbiol; 1999 Mar; 65(3):1015-9. PubMed ID: 10049857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism.
    Zhou NY; Fuenmayor SL; Williams PA
    J Bacteriol; 2001 Jan; 183(2):700-8. PubMed ID: 11133965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolysis of carbaryl by a Pseudomonas sp. and construction of a microbial consortium that completely metabolizes carbaryl.
    Chapalamadugu S; Chaudhry GR
    Appl Environ Microbiol; 1991 Mar; 57(3):744-50. PubMed ID: 1903914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.