These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23728525)

  • 1. Novel benzimidazolium-urea-based macrocyclic fluorescent sensors: synthesis, ratiometric sensing of H2PO4(-) and improvement of the anion binding performance via a synergistic binding strategy.
    Zhang D; Jiang X; Yang H; Su Z; Gao E; Martinez A; Gao G
    Chem Commun (Camb); 2013 Jul; 49(55):6149-51. PubMed ID: 23728525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acridine-based macrocyclic fluorescent sensors: self-assembly behavior characterized by crystal structures and a tunable bathochromic-shift in emission induced by H2PO4(-)via adjusting the ring size and rigidity.
    Zhang D; Jiang X; Yang H; Martinez A; Feng M; Dong Z; Gao G
    Org Biomol Chem; 2013 May; 11(20):3375-81. PubMed ID: 23563223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorogenic sensing of CH3CO2- and H2PO4- by ditopic receptor through conformational change.
    Ahmed N; Suresh V; Shirinfar B; Geronimo I; Bist A; Hwang IC; Kim KS
    Org Biomol Chem; 2012 Mar; 10(10):2094-100. PubMed ID: 22293977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent acridine-based receptors for H2PO4(-).
    Martí-Centelles V; Burguete MI; Galindo F; Izquierdo MA; Kumar DK; White AJ; Luis SV; Vilar R
    J Org Chem; 2012 Jan; 77(1):490-500. PubMed ID: 22077800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and photophysical evaluation of charge neutral thiourea or urea based fluorescent PET sensors for bis-carboxylates and pyrophosphate.
    Gunnlaugsson T; Davis AP; O'Brien JE; Glynn M
    Org Biomol Chem; 2005 Jan; 3(1):48-56. PubMed ID: 15602598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anion complexation and sensing using modified urea and thiourea-based receptors.
    Li AF; Wang JH; Wang F; Jiang YB
    Chem Soc Rev; 2010 Oct; 39(10):3729-45. PubMed ID: 20737072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ortho-phenylenediamine-based open and macrocyclic receptors in selective sensing of H2PO4(-), ATP and ADP under different conditions.
    Ghosh K; Saha I
    Org Biomol Chem; 2012 Dec; 10(47):9383-92. PubMed ID: 23108334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric and fluorescent anion sensors: an overview of recent developments in the use of 1,8-naphthalimide-based chemosensors.
    Duke RM; Veale EB; Pfeffer FM; Kruger PE; Gunnlaugsson T
    Chem Soc Rev; 2010 Oct; 39(10):3936-53. PubMed ID: 20818454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel anthracene-based fluorescent sensor for selective recognition of acetate anions in protic media.
    Xu K; Kong H; Li Q; Song P; Dai Y; Yang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():957-61. PubMed ID: 25282025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent sensing of anions with acridinedione based neutral PET chemosensor.
    Thiagarajan V; Ramamurthy P
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):772-7. PubMed ID: 17081799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ratiometric fluorescence detection of anions by silanediol-based receptors bearing anthryl and pyrenyl groups.
    Kondo S; Bie Y; Yamamura M
    Org Lett; 2013 Feb; 15(3):520-3. PubMed ID: 23343033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of anthracene-appended amino acids as highly selective and sensitive fluorescent Fe3+ ion sensors.
    Lohani CR; Kim JM; Lee KH
    Bioorg Med Chem Lett; 2009 Nov; 19(21):6069-73. PubMed ID: 19796937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence sensing of anions based on inhibition of excited-state intramolecular proton transfer.
    Wu Y; Peng X; Fan J; Gao S; Tian M; Zhao J; Sun S
    J Org Chem; 2007 Jan; 72(1):62-70. PubMed ID: 17194082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral receptors for phosphate ions.
    Amendola V; Boiocchi M; Esteban-Gómez D; Fabbrizzi L; Monzani E
    Org Biomol Chem; 2005 Jul; 3(14):2632-9. PubMed ID: 15999198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acridine-based complex as amino acid anion fluorescent sensor in aqueous solution.
    Dai Y; Xu K; Li Q; Wang C; Liu X; Wang P
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Mar; 157():1-5. PubMed ID: 26687098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective ratiometric detection of mercury(II) ions in water with an acridizinium-based fluorescent probe.
    Tian M; Ihmels H
    Chem Commun (Camb); 2009 Jun; (22):3175-7. PubMed ID: 19587904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent imidazolium-based cyclophane for detection of guanosine-5'-triphosphate and I(-) in aqueous solution of physiological pH.
    Ahmed N; Shirinfar B; Geronimo I; Kim KS
    Org Lett; 2011 Oct; 13(20):5476-9. PubMed ID: 21942818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly selective fluorescent chemosensor for guanosine-5'-triphosphate via excimer formation in aqueous solution of physiological pH.
    Ahmed N; Shirinfar B; Youn IS; Bist A; Suresh V; Kim KS
    Chem Commun (Camb); 2012 Mar; 48(21):2662-4. PubMed ID: 22222484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bis(Dpa-Zn(II)) appended xanthone: excitation ratiometric chemosensor for phosphate anions.
    Ojida A; Nonaka H; Miyahara Y; Tamaru S; Sada K; Hamachi I
    Angew Chem Int Ed Engl; 2006 Aug; 45(33):5518-21. PubMed ID: 16847978
    [No Abstract]   [Full Text] [Related]  

  • 20. Imidazolium-based macrocycles as multisignaling chemosensors for anions.
    Niu HT; Yin Z; Su D; Niu D; He J; Cheng JP
    Dalton Trans; 2008 Jul; (28):3694-700. PubMed ID: 18615215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.