These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

663 related articles for article (PubMed ID: 23728592)

  • 1. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks.
    Shen Y; Bax A
    J Biomol NMR; 2013 Jul; 56(3):227-41. PubMed ID: 23728592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.
    Shen Y; Delaglio F; Cornilescu G; Bax A
    J Biomol NMR; 2009 Aug; 44(4):213-23. PubMed ID: 19548092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein structural information derived from NMR chemical shift with the neural network program TALOS-N.
    Shen Y; Bax A
    Methods Mol Biol; 2015; 1260():17-32. PubMed ID: 25502373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate prediction of protein torsion angles using chemical shifts and sequence homology.
    Neal S; Berjanskii M; Zhang H; Wishart DS
    Magn Reson Chem; 2006 Jul; 44 Spec No():S158-67. PubMed ID: 16823900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology.
    Shen Y; Bax A
    J Biomol NMR; 2007 Aug; 38(4):289-302. PubMed ID: 17610132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein backbone angle restraints from searching a database for chemical shift and sequence homology.
    Cornilescu G; Delaglio F; Bax A
    J Biomol NMR; 1999 Mar; 13(3):289-302. PubMed ID: 10212987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuations of backbone torsion angles obtained from NMR-determined structures and their prediction.
    Zhang T; Faraggi E; Zhou Y
    Proteins; 2010 Dec; 78(16):3353-62. PubMed ID: 20818661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network.
    Shen Y; Bax A
    J Biomol NMR; 2010 Sep; 48(1):13-22. PubMed ID: 20628786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network.
    Faraggi E; Xue B; Zhou Y
    Proteins; 2009 Mar; 74(4):847-56. PubMed ID: 18704931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction.
    Faraggi E; Yang Y; Zhang S; Zhou Y
    Structure; 2009 Nov; 17(11):1515-27. PubMed ID: 19913486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated prediction of 15N, 13Calpha, 13Cbeta and 13C' chemical shifts in proteins using a density functional database.
    Xu XP; Case DA
    J Biomol NMR; 2001 Dec; 21(4):321-33. PubMed ID: 11824752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting the use of 13C(alpha) chemical shifts to determine, refine, and validate protein structures.
    Vila JA; Scheraga HA
    Proteins; 2008 May; 71(2):641-54. PubMed ID: 17975838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the accuracy of protein structures by quantum mechanical computations of 13C(alpha) chemical shifts.
    Vila JA; Scheraga HA
    Acc Chem Res; 2009 Oct; 42(10):1545-53. PubMed ID: 19572703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Bayesian-probability-based method for assigning protein backbone dihedral angles based on chemical shifts and local sequences.
    Wang J; Liu H
    J Biomol NMR; 2007 Jan; 37(1):31-41. PubMed ID: 17151953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning methods for protein torsion angle prediction.
    Li H; Hou J; Adhikari B; Lyu Q; Cheng J
    BMC Bioinformatics; 2017 Sep; 18(1):417. PubMed ID: 28923002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OPUS-TASS: a protein backbone torsion angles and secondary structure predictor based on ensemble neural networks.
    Xu G; Wang Q; Ma J
    Bioinformatics; 2020 Dec; 36(20):5021-5026. PubMed ID: 32678893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate measurement of methyl 13C chemical shifts by solid-state NMR for the determination of protein side chain conformation: the influenza a M2 transmembrane peptide as an example.
    Hong M; Mishanina TV; Cady SD
    J Am Chem Soc; 2009 Jun; 131(22):7806-16. PubMed ID: 19441789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto-encoder deep neural network.
    Lyons J; Dehzangi A; Heffernan R; Sharma A; Paliwal K; Sattar A; Zhou Y; Yang Y
    J Comput Chem; 2014 Oct; 35(28):2040-6. PubMed ID: 25212657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database.
    Ginzinger SW; Coles M
    J Biomol NMR; 2009 Mar; 43(3):179-85. PubMed ID: 19224375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of nearest neighbor effects on backbone torsion angles and NMR scalar coupling constants in disordered proteins.
    Shen Y; Roche J; Grishaev A; Bax A
    Protein Sci; 2018 Jan; 27(1):146-158. PubMed ID: 28884933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.