These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 23728593)
1. Extremely fast and highly selective detection of nitroaromatic explosive vapours using fluorescent polymer thin films. Demirel GB; Daglar B; Bayindir M Chem Commun (Camb); 2013 Jul; 49(55):6140-2. PubMed ID: 23728593 [TBL] [Abstract][Full Text] [Related]
2. Formation of pyrene excimers in mesoporous ormosil thin films for visual detection of nitro-explosives. Beyazkilic P; Yildirim A; Bayindir M ACS Appl Mater Interfaces; 2014 Apr; 6(7):4997-5004. PubMed ID: 24635728 [TBL] [Abstract][Full Text] [Related]
3. Detection of nitroaromatic vapours with diketopyrrolopyrrole thin films: exploring the role of structural order and morphology on thin film properties and fluorescence quenching efficiency. Warzecha M; Calvo-Castro J; Kennedy AR; Macpherson AN; Shankland K; Shankland N; McLean AJ; McHugh CJ Chem Commun (Camb); 2015 Jan; 51(6):1143-6. PubMed ID: 25466759 [TBL] [Abstract][Full Text] [Related]
4. Template-directed synthesis of silica nanotubes for explosive detection. Yildirim A; Acar H; Erkal TS; Bayindir M; Guler MO ACS Appl Mater Interfaces; 2011 Oct; 3(10):4159-64. PubMed ID: 21942571 [TBL] [Abstract][Full Text] [Related]
5. Fluorescent porous film modified polymer optical fiber via "click" chemistry: stable dye dispersion and trace explosive detection. Ma J; Lv L; Zou G; Zhang Q ACS Appl Mater Interfaces; 2015 Jan; 7(1):241-9. PubMed ID: 25487515 [TBL] [Abstract][Full Text] [Related]
6. Fluorescent sensors for nitroaromatic compounds based on monolayer assembly of polycyclic aromatics. Zhang S; Lü F; Gao L; Ding L; Fang Y Langmuir; 2007 Jan; 23(3):1584-90. PubMed ID: 17241091 [TBL] [Abstract][Full Text] [Related]
7. APTS and rGO co-functionalized pyrenated fluorescent nanonets for representative vapor phase nitroaromatic explosive detection. Guo L; Zu B; Yang Z; Cao H; Zheng X; Dou X Nanoscale; 2014; 6(3):1467-73. PubMed ID: 24316887 [TBL] [Abstract][Full Text] [Related]
8. A facile fabrication of electrodeposited luminescent MOF thin films for selective and recyclable sensing of nitroaromatic explosives. Zhang F; Wang Y; Chu T; Wang Z; Li W; Yang Y Analyst; 2016 Jul; 141(14):4502-10. PubMed ID: 27158945 [TBL] [Abstract][Full Text] [Related]
9. Water-soluble polymer functionalized CdTe/ZnS quantum dots: a facile ratiometric fluorescent probe for sensitive and selective detection of nitroaromatic explosives. Liu B; Tong C; Feng L; Wang C; He Y; Lü C Chemistry; 2014 Feb; 20(8):2132-7. PubMed ID: 24515606 [TBL] [Abstract][Full Text] [Related]
10. Highly selective and sensitive fluorescent paper sensor for nitroaromatic explosive detection. Ma Y; Li H; Peng S; Wang L Anal Chem; 2012 Oct; 84(19):8415-21. PubMed ID: 22946839 [TBL] [Abstract][Full Text] [Related]
12. Highly sensitive detection of nitroaromatic explosives using an electrospun nanofibrous sensor based on a novel fluorescent conjugated polymer. Long Y; Chen H; Wang H; Peng Z; Yang Y; Zhang G; Li N; Liu F; Pei J Anal Chim Acta; 2012 Sep; 744():82-91. PubMed ID: 22935378 [TBL] [Abstract][Full Text] [Related]
13. Unambiguous detection of nitrated explosive vapours by fluorescence quenching of dendrimer films. Geng Y; Ali MA; Clulow AJ; Fan S; Burn PL; Gentle IR; Meredith P; Shaw PE Nat Commun; 2015 Sep; 6():8240. PubMed ID: 26370931 [TBL] [Abstract][Full Text] [Related]
14. Efficient sensing of explosives by using fluorescent nonporous films of oligophenyleneethynylene derivatives thanks to optimal structure orientation and exciton migration. Caron T; Pasquinet E; van der Lee A; Pansu RB; Rouessac V; Clavaguera S; Bouhadid M; Serein-Spirau F; Lère-Porte JP; Montméat P Chemistry; 2014 Nov; 20(46):15069-76. PubMed ID: 25257621 [TBL] [Abstract][Full Text] [Related]
15. The binding and fluorescence quenching efficiency of nitroaromatic (explosive) vapors in fluorescent carbazole dendrimer thin films. Shaw PE; Cavaye H; Chen SS; James M; Gentle IR; Burn PL Phys Chem Chem Phys; 2013 Jun; 15(24):9845-53. PubMed ID: 23676991 [TBL] [Abstract][Full Text] [Related]
16. Iptycene-based fluorescent sensors for nitroaromatics and TNT. Anzenbacher P; Mosca L; Palacios MA; Zyryanov GV; Koutnik P Chemistry; 2012 Oct; 18(40):12712-8. PubMed ID: 22930534 [TBL] [Abstract][Full Text] [Related]
17. Real-time fluorescence quenching-based detection of nitro-containing explosive vapours: what are the key processes? Shaw PE; Burn PL Phys Chem Chem Phys; 2017 Nov; 19(44):29714-29730. PubMed ID: 28850131 [TBL] [Abstract][Full Text] [Related]
18. Fluorescent metal-organic framework for selective sensing of nitroaromatic explosives. Gole B; Bar AK; Mukherjee PS Chem Commun (Camb); 2011 Nov; 47(44):12137-9. PubMed ID: 21993497 [TBL] [Abstract][Full Text] [Related]
19. Preconcentration techniques for trace explosive sensing. Gillanders RN; Glackin JME; Filipi J; Kezic N; Samuel IDW; Turnbull GA Sci Total Environ; 2019 Mar; 658():650-658. PubMed ID: 30580219 [TBL] [