These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 23728731)
21. Silver nanoparticles enhance the larvicidal toxicity of Photorhabdus and Xenorhabdus bacterial toxins: an approach to control the filarial vector, Culex pipiens. El-Sadawy HA; El Namaky AH; Hafez EE; Baiome BA; Ahmed AM; Ashry HM; Ayaad TH Trop Biomed; 2018 Jun; 35(2):392-407. PubMed ID: 33601813 [TBL] [Abstract][Full Text] [Related]
22. Biocontrol potential of cell suspensions and cell-free superntants of different Xenorhabdus and Photorhabdus bacteria against the different larval instars of Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae). Ünal M; Yüksel E; Canhilal R Exp Parasitol; 2022 Nov; 242():108394. PubMed ID: 36179855 [TBL] [Abstract][Full Text] [Related]
23. Biological control of Phlebotomus papatasi larvae by using entomopathogenic nematodes and its symbiotic bacterial toxins. El-Sadawy HA; Ramadan MY; Abdel Megeed KN; Ali HH; El Sattar SA; Elakabawy LM Trop Biomed; 2020 Jun; 37(2):288-302. PubMed ID: 33612799 [TBL] [Abstract][Full Text] [Related]
24. HETERORHABDITIS BACTERIOPHORA NEMATODES ARE SENSITIVE TO THE BACTERIAL PATHOGEN PHOTORHABDUS ASYMBIOTICA. Kim I; Heryanto C; Eleftherianos I J Parasitol; 2023 Jan; 109(1):11-14. PubMed ID: 36805240 [TBL] [Abstract][Full Text] [Related]
25. Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Goodrich-Blair H; Clarke DJ Mol Microbiol; 2007 Apr; 64(2):260-8. PubMed ID: 17493120 [TBL] [Abstract][Full Text] [Related]
26. Txp40, a ubiquitous insecticidal toxin protein from Xenorhabdus and Photorhabdus bacteria. Brown SE; Cao AT; Dobson P; Hines ER; Akhurst RJ; East PD Appl Environ Microbiol; 2006 Feb; 72(2):1653-62. PubMed ID: 16461722 [TBL] [Abstract][Full Text] [Related]
27. PirAB protein from Xenorhabdus nematophila HB310 exhibits a binary toxin with insecticidal activity and cytotoxicity in Galleria mellonella. Yang Q; Zhang J; Li T; Liu S; Song P; Nangong Z; Wang Q J Invertebr Pathol; 2017 Sep; 148():43-50. PubMed ID: 28438456 [TBL] [Abstract][Full Text] [Related]
29. Neem oil increases the persistence of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae. Paula AR; Ribeiro A; Lemos FJA; Silva CP; Samuels RI Parasit Vectors; 2019 Apr; 12(1):163. PubMed ID: 30975207 [TBL] [Abstract][Full Text] [Related]
30. [Toxic activity of Bacillus Thuringiensis isolates to Aedes Aegypti (L.) (Diptera: Culicidae) larvae]. da Costa JR; Rossi JR; Marucci SC; da C Alves EC; Volpe HX; Ferraudo AS; Lemos MV; Desidério JA Neotrop Entomol; 2010; 39(5):757-66. PubMed ID: 21120386 [TBL] [Abstract][Full Text] [Related]
31. Bacteria isolated from Aedes aegypti with potential vector control applications. de Oliveira JC; de Melo Katak R; Muniz VA; de Oliveira MR; Rocha EM; da Silva WR; do Carmo EJ; Roque RA; Marinotti O; Terenius O; Astolfi-Filho S J Invertebr Pathol; 2024 Jun; 204():108094. PubMed ID: 38479456 [TBL] [Abstract][Full Text] [Related]
32. Potentiating effect of Bacillus thuringiensis subsp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth (Lepidoptera: Plutellidae). Jung SC; Kim YG J Econ Entomol; 2007 Feb; 100(1):246-50. PubMed ID: 17370835 [TBL] [Abstract][Full Text] [Related]
33. Action of Metarhizium brunneum (Hypocreales: Clavicipitaceae) Against Organophosphate- and Pyrethroid-Resistant Aedes aegypti (Diptera: Culicidae) and the Synergistic Effects of Phenylthiourea. Prado R; Macedo-Salles PA; Duprat RC; Baptista ARS; Feder D; Lima JBP; Butt T; Ratcliffe NA; Mello CB J Med Entomol; 2020 Feb; 57(2):454-462. PubMed ID: 31559435 [TBL] [Abstract][Full Text] [Related]
34. The deterrent ability of Xenorhabdus nematophila and Photorhabdus laumondii compounds as a potential novel tool for Lobesia botrana (Lepidoptera: Tortricidae) management. Vicente-Díez I; Pou A; Campos-Herrera R J Invertebr Pathol; 2023 Jun; 198():107911. PubMed ID: 36921888 [TBL] [Abstract][Full Text] [Related]
35. Yüksel E; Yıldırım A; İmren M; Canhilal R; Dababat AA Pathogens; 2023 Aug; 12(9):. PubMed ID: 37764903 [TBL] [Abstract][Full Text] [Related]
36. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae). Paula AR; Carolino AT; Paula CO; Samuels RI Parasit Vectors; 2011 Jan; 4():8. PubMed ID: 21266078 [TBL] [Abstract][Full Text] [Related]
37. Toxicity of Photorhabdus luminescens and Xenorhabdus bovienii bacterial metabolites to pecan aphids (Hemiptera: Aphididae) and the lady beetle Harmonia axyridis (Coleoptera: Coccinellidae). Wu S; Toews MD; Cottrell TE; Schmidt JM; Shapiro-Ilan DI J Invertebr Pathol; 2022 Oct; 194():107806. PubMed ID: 35944664 [TBL] [Abstract][Full Text] [Related]
38. Application of toxins from the entomopathogenic bacterium, Xenorhabdus nematophila, for the control of insects on foliage. Mahar AN; Al-Siyabi AA; Elawad SA; Hague NG; Gowen SR Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):233-8. PubMed ID: 17390798 [TBL] [Abstract][Full Text] [Related]
39. Larvicidal and irritant activities of hexane leaf extracts of Citrus sinensis against dengue vector Aedes aegypti L. Warikoo R; Ray A; Sandhu JK; Samal R; Wahab N; Kumar S Asian Pac J Trop Biomed; 2012 Feb; 2(2):152-5. PubMed ID: 23569887 [TBL] [Abstract][Full Text] [Related]
40. Bacterial microbiota of Aedes aegypti mosquito larvae is altered by intoxication with Bacillus thuringiensis israelensis. Tetreau G; Grizard S; Patil CD; Tran FH; Tran Van V; Stalinski R; Laporte F; Mavingui P; Després L; Valiente Moro C Parasit Vectors; 2018 Mar; 11(1):121. PubMed ID: 29499735 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]