These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23729652)

  • 1. Role of the ribosomal P-site elements of m²G966, m⁵C967, and the S9 C-terminal tail in maintenance of the reading frame during translational elongation in Escherichia coli.
    Arora S; Bhamidimarri SP; Weber MH; Varshney U
    J Bacteriol; 2013 Aug; 195(16):3524-30. PubMed ID: 23729652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinctive contributions of the ribosomal P-site elements m2G966, m5C967 and the C-terminal tail of the S9 protein in the fidelity of initiation of translation in Escherichia coli.
    Arora S; Bhamidimarri SP; Bhattacharyya M; Govindan A; Weber MH; Vishveshwara S; Varshney U
    Nucleic Acids Res; 2013 May; 41(9):4963-75. PubMed ID: 23530111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The phenotype of many independently isolated +1 frameshift suppressor mutants supports a pivotal role of the P-site in reading frame maintenance.
    Jäger G; Nilsson K; Björk GR
    PLoS One; 2013; 8(4):e60246. PubMed ID: 23593181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of methylations of m2G966/m5C967 in 16S rRNA on bacterial fitness and translation initiation.
    Burakovsky DE; Prokhorova IV; Sergiev PV; Milón P; Sergeeva OV; Bogdanov AA; Rodnina MV; Dontsova OA
    Nucleic Acids Res; 2012 Sep; 40(16):7885-95. PubMed ID: 22649054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified nucleotides m(2)G966/m(5)C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon.
    Prokhorova IV; Osterman IA; Burakovsky DE; Serebryakova MV; Galyamina MA; Pobeguts OV; Altukhov I; Kovalchuk S; Alexeev DG; Govorun VM; Bogdanov AA; Sergiev PV; Dontsova OA
    Sci Rep; 2013 Nov; 3():3236. PubMed ID: 24241179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the role of the P-site in leftward ribosome frameshifting at a hungry codon.
    Kolor K; Lindsley D; Gallant JA
    J Mol Biol; 1993 Mar; 230(1):1-5. PubMed ID: 8450528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting.
    Brierley I; Meredith MR; Bloys AJ; Hagervall TG
    J Mol Biol; 1997 Jul; 270(3):360-73. PubMed ID: 9237903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic analysis of the E site during RF2 programmed frameshifting.
    Sanders CL; Curran JF
    RNA; 2007 Sep; 13(9):1483-91. PubMed ID: 17660276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for the 30S subunit E site in maintenance of the translational reading frame.
    Devaraj A; Shoji S; Holbrook ED; Fredrick K
    RNA; 2009 Feb; 15(2):255-65. PubMed ID: 19095617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2.
    Márquez V; Wilson DN; Tate WP; Triana-Alonso F; Nierhaus KH
    Cell; 2004 Jul; 118(1):45-55. PubMed ID: 15242643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous ribosomal translocation of mRNA and tRNAs into a chimeric hybrid state.
    Zhou J; Lancaster L; Donohue JP; Noller HF
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7813-7818. PubMed ID: 30936299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in 16S rRNA in Escherichia coli at methyl-modified sites: G966, C967, and G1207.
    Jemiolo DK; Taurence JS; Giese S
    Nucleic Acids Res; 1991 Aug; 19(15):4259-65. PubMed ID: 1714565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Destabilization of the P site codon-anticodon helix results from movement of tRNA into the P/E hybrid state within the ribosome.
    McGarry KG; Walker SE; Wang H; Fredrick K
    Mol Cell; 2005 Nov; 20(4):613-22. PubMed ID: 16307924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The allosteric three-site model for the ribosomal elongation cycle. Analysis with a heteropolymeric mRNA.
    Gnirke A; Geigenmüller U; Rheinberger HJ; Nierhaus LH
    J Biol Chem; 1989 May; 264(13):7291-301. PubMed ID: 2651438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CCC CGA is a weak translational recoding site in Escherichia coli.
    Shu P; Dai H; Mandecki W; Goldman E
    Gene; 2004 Dec; 343(1):127-32. PubMed ID: 15563838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased ribosomal accuracy increases a programmed translational frameshift in Escherichia coli.
    Sipley J; Goldman E
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2315-9. PubMed ID: 8460140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural aspects of messenger RNA reading frame maintenance by the ribosome.
    Jenner LB; Demeshkina N; Yusupova G; Yusupov M
    Nat Struct Mol Biol; 2010 May; 17(5):555-60. PubMed ID: 20400952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA.
    Herr AJ; Nelson CC; Wills NM; Gesteland RF; Atkins JF
    J Mol Biol; 2001 Jun; 309(5):1029-48. PubMed ID: 11399077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The ribosomal grip of the peptidyl-tRNA is critical for reading frame maintenance.
    Näsvall SJ; Nilsson K; Björk GR
    J Mol Biol; 2009 Jan; 385(2):350-67. PubMed ID: 19013179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function of the ribosomal E-site: a mutagenesis study.
    Sergiev PV; Lesnyak DV; Kiparisov SV; Burakovsky DE; Leonov AA; Bogdanov AA; Brimacombe R; Dontsova OA
    Nucleic Acids Res; 2005; 33(18):6048-56. PubMed ID: 16243787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.