These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Stable biphasic interfaces for open microfluidic platforms. Lee UN; Berthier J; Yu J; Berthier E; Theberge AB Biomed Microdevices; 2019 Feb; 21(1):16. PubMed ID: 30747285 [TBL] [Abstract][Full Text] [Related]
3. Microfluidics-based in vivo mimetic systems for the study of cellular biology. Kim D; Wu X; Young AT; Haynes CL Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566 [TBL] [Abstract][Full Text] [Related]
5. Recent advances on open fluidic systems for biomedical applications: A review. Oliveira NM; Vilabril S; Oliveira MB; Reis RL; Mano JF Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():851-863. PubMed ID: 30678977 [TBL] [Abstract][Full Text] [Related]
6. Vascularized microfluidic platforms to mimic the tumor microenvironment. Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072 [TBL] [Abstract][Full Text] [Related]
7. Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels. Melin J; van der Wijngaart W; Stemme G Lab Chip; 2005 Jun; 5(6):682-6. PubMed ID: 15915262 [TBL] [Abstract][Full Text] [Related]
8. A plate reader-compatible microchannel array for cell biology assays. Yu H; Alexander CM; Beebe DJ Lab Chip; 2007 Mar; 7(3):388-91. PubMed ID: 17330172 [TBL] [Abstract][Full Text] [Related]
9. A microfluidic platform for modeling metastatic cancer cell matrix invasion. Blaha L; Zhang C; Cabodi M; Wong JY Biofabrication; 2017 Sep; 9(4):045001. PubMed ID: 28812983 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic tool box as technology platform for hand-held diagnostics. Pugia MJ; Blankenstein G; Peters RP; Profitt JA; Kadel K; Willms T; Sommer R; Kuo HH; Schulman LS Clin Chem; 2005 Oct; 51(10):1923-32. PubMed ID: 16055433 [TBL] [Abstract][Full Text] [Related]
11. Rapid Prototyping of Thermoplastic Microfluidic Devices. Novak R; Ng CF; Ingber DE Methods Mol Biol; 2018; 1771():161-170. PubMed ID: 29633212 [TBL] [Abstract][Full Text] [Related]
12. Microfluidics for miniaturized laboratories on a chip. Franke TA; Wixforth A Chemphyschem; 2008 Oct; 9(15):2140-56. PubMed ID: 18932153 [TBL] [Abstract][Full Text] [Related]
13. Inertial microfluidic physics. Amini H; Lee W; Di Carlo D Lab Chip; 2014 Aug; 14(15):2739-61. PubMed ID: 24914632 [TBL] [Abstract][Full Text] [Related]
14. An automated microdroplet passive pumping platform for high-speed and packeted microfluidic flow applications. Resto PJ; Mogen BJ; Berthier E; Williams JC Lab Chip; 2010 Jan; 10(1):23-6. PubMed ID: 20024045 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application. Chung KH; Hong JW; Lee DS; Yoon HC Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640 [TBL] [Abstract][Full Text] [Related]
16. Continuous Flow Microfluidic Bioparticle Concentrator. Martel JM; Smith KC; Dlamini M; Pletcher K; Yang J; Karabacak M; Haber DA; Kapur R; Toner M Sci Rep; 2015 Jun; 5():11300. PubMed ID: 26061253 [TBL] [Abstract][Full Text] [Related]
17. [Microfluidic cell culture array chip for drug screening assays]. Zheng Y; Wu J; Shao J; Jin Q; Zhao J Sheng Wu Gong Cheng Xue Bao; 2009 May; 25(5):779-85. PubMed ID: 19670650 [TBL] [Abstract][Full Text] [Related]
18. Fracture-based fabrication of normally closed, adjustable, and fully reversible microscale fluidic channels. Kim BC; Moraes C; Huang J; Matsuoka T; Thouless MD; Takayama S Small; 2014 Oct; 10(19):4020-4029. PubMed ID: 24942855 [TBL] [Abstract][Full Text] [Related]
19. Micromixing within microfluidic devices. Capretto L; Cheng W; Hill M; Zhang X Top Curr Chem; 2011; 304():27-68. PubMed ID: 21526435 [TBL] [Abstract][Full Text] [Related]