These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23729844)

  • 1. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.
    Cheng L; Li Y; Grosh K
    J Comput Phys; 2013 Aug; 247():248-261. PubMed ID: 23729844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three Dimensional Viscous Finite Element Formulation For Acoustic Fluid Structure Interaction.
    Cheng L; White RD; Grosh K
    Comput Methods Appl Mech Eng; 2008 Sep; 197(49-50):4160-4172. PubMed ID: 20174602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic microbubble dynamics with viscous effects.
    Manmi K; Wang Q
    Ultrason Sonochem; 2017 May; 36():427-436. PubMed ID: 28069230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesh-free distributed point source method for modeling viscous fluid motion between disks vibrating at ultrasonic frequency.
    Wada Y; Kundu T; Nakamura K
    J Acoust Soc Am; 2014 Aug; 136(2):466-74. PubMed ID: 25096081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscous scattering of a pressure wave: calculation of the fluid tractions on a biomimetic acoustic velocity sensor.
    Homentcovschi D; Miles RN
    J Acoust Soc Am; 2006 Feb; 119(2):777-87. PubMed ID: 16521738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.
    Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH
    Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses.
    Cutanda-Henríquez V; Juhl PM
    J Acoust Soc Am; 2013 Nov; 134(5):3409-18. PubMed ID: 24180751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic analysis of submerged microscale plates: the effects of acoustic radiation and viscous dissipation.
    Wu Z; Ma X
    Proc Math Phys Eng Sci; 2016 Mar; 472(2187):20150728. PubMed ID: 27118914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mean force on a finite-sized spherical particle due to an acoustic field in a viscous compressible medium.
    Annamalai S; Balachandar S; Parmar MK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053008. PubMed ID: 25353881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surface elasticity on the motion of a droplet in a viscous fluid.
    Felderhof BU
    J Chem Phys; 2006 Sep; 125(12):124904. PubMed ID: 17014205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupled mean flow-amplitude equations for nearly inviscid parametrically driven surface waves.
    Knobloch E; Martel C; Vega JM
    Ann N Y Acad Sci; 2002 Oct; 974():201-19. PubMed ID: 12446326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational approximations of viscous losses in vocal tract acoustic modeling.
    Wilhelms-Tricarico R; McGowan RS
    J Acoust Soc Am; 2004 Jun; 115(6):3195-201. PubMed ID: 15237843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A coupled finite-element, boundary-integral method for simulating ultrasonic flowmeters.
    Bezdĕk M; Landes H; Rieder A; Lerch R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):636-46. PubMed ID: 17375833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Backtracking of a sphere slowing down in a viscous compressible fluid.
    Felderhof BU
    J Chem Phys; 2005 Jul; 123(4):044902. PubMed ID: 16095387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and improvement of Brinkman lattice Boltzmann schemes: bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media.
    Ginzburg I; Silva G; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023307. PubMed ID: 25768636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.
    Chan B; Donzelli PS; Spilker RL
    Ann Biomed Eng; 2000 Jun; 28(6):589-97. PubMed ID: 10983705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods.
    Frank F; Liu C; Scanziani A; Alpak FO; Riviere B
    J Colloid Interface Sci; 2018 Aug; 523():282-291. PubMed ID: 29680167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.