These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23729844)

  • 21. Backtracking of a sphere slowing down in a viscous compressible fluid.
    Felderhof BU
    J Chem Phys; 2005 Jul; 123(4):044902. PubMed ID: 16095387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis and improvement of Brinkman lattice Boltzmann schemes: bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media.
    Ginzburg I; Silva G; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023307. PubMed ID: 25768636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mixed-penalty biphasic finite element formulation incorporating viscous fluids and material interfaces.
    Chan B; Donzelli PS; Spilker RL
    Ann Biomed Eng; 2000 Jun; 28(6):589-97. PubMed ID: 10983705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods.
    Frank F; Liu C; Scanziani A; Alpak FO; Riviere B
    J Colloid Interface Sci; 2018 Aug; 523():282-291. PubMed ID: 29680167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical simulation of pharyngeal bolus flow influenced by bolus viscosity and apparent slip.
    Mizunuma H; Sonomura M; Shimokasa K
    J Texture Stud; 2020 Oct; 51(5):742-754. PubMed ID: 32329056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acoustic transmission line based modelling of microscaled channels and enclosures.
    Anzinger S; Manz J; Bretthauer C; Krumbein U; Dehé A
    J Acoust Soc Am; 2019 Feb; 145(2):968. PubMed ID: 30823794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical modeling of fluid-structure interaction in arteries with anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains.
    Balzani D; Deparis S; Fausten S; Forti D; Heinlein A; Klawonn A; Quarteroni A; Rheinbach O; Schröder J
    Int J Numer Method Biomed Eng; 2016 Oct; 32(10):. PubMed ID: 26509253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Finite Element Iterative Methods for the 3D Steady Navier--Stokes Equations.
    He Y
    Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Helmholtz decomposition coupling rotational to irrotational flow of a viscous fluid.
    Joseph DD
    Proc Natl Acad Sci U S A; 2006 Sep; 103(39):14272-7. PubMed ID: 16983077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A finite difference method with subsampling for immersed boundary simulations of the capsule dynamics with viscoelastic membranes.
    Li P; Zhang J
    Int J Numer Method Biomed Eng; 2019 Jun; 35(6):e3200. PubMed ID: 30884167
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dispersive hydrodynamics in viscous fluid conduits.
    Lowman NK; Hoefer MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023016. PubMed ID: 24032933
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An effective numerical method for solving viscous-inviscid interaction problems.
    Kravtsova MA; Zametaev VB; Ruban AI
    Philos Trans A Math Phys Eng Sci; 2005 May; 363(1830):1157-67. PubMed ID: 16105776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acoustic coupled fluid-structure interactions using a unified fast multipole boundary element method.
    Wilkes DR; Duncan AJ
    J Acoust Soc Am; 2015 Apr; 137(4):2158-67. PubMed ID: 25920865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A microacoustic analysis including viscosity and thermal conductivity to model the effect of the protective cap on the acoustic response of a MEMS microphone.
    Homentcovschi D; Miles RN; Loeppert PV; Zuckerwar AJ
    Microsyst Technol; 2014 Feb; 20(2):265-272. PubMed ID: 24701031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variational principle for the Navier-Stokes equations.
    Kerswell RR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5482-94. PubMed ID: 11969527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell.
    Livermore PW; Bailey LM; Hollerbach R
    Sci Rep; 2016 Mar; 6():22812. PubMed ID: 26980289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unsteady viscous flow model on moving the domain through a stenotic artery.
    Ng EY; Siauw WL
    Proc Inst Mech Eng H; 2001; 215(2):237-49. PubMed ID: 11382083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acoustic scattering by a rigid elliptic cylinder in a slightly viscous medium.
    Scharstein RW; Davis AM
    J Acoust Soc Am; 2007 Jun; 121(6):3300-10. PubMed ID: 17552682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrodynamic flow of non-Newtonian power-law fluid past a moving wedge or a stretching sheet: a unified computational approach.
    Kudenatti RB; Misbah NE
    Sci Rep; 2020 Jun; 10(1):9445. PubMed ID: 32523026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling the motion of clusters of cells in a viscous fluid using the boundary integral method.
    Harris PJ
    Math Biosci; 2018 Dec; 306():145-151. PubMed ID: 30267736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.