These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23729869)

  • 1. Coupled Particulate and Continuum Model for Nanoparticle Targeted Delivery.
    Tan J; Wang S; Yang J; Liu Y
    Comput Struct; 2013 Jun; 122():128-134. PubMed ID: 23729869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation.
    Tan J; Thomas A; Liu Y
    Soft Matter; 2011 Dec; 8():1934-1946. PubMed ID: 22375153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review.
    Babakhani P; Bridge J; Doong RA; Phenrat T
    Adv Colloid Interface Sci; 2017 Aug; 246():75-104. PubMed ID: 28641812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of nanoparticle binding dynamics in microcirculation using an adhesion probability function.
    Sohrabi S; Yunus DE; Xu J; Yang J; Liu Y
    Microvasc Res; 2016 Nov; 108():41-7. PubMed ID: 27423938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of size, shape and vessel geometry on nanoparticle distribution.
    Tan J; Shah S; Thomas A; Ou-Yang HD; Liu Y
    Microfluid Nanofluidics; 2013 Jan; 14(1-2):77-87. PubMed ID: 23554583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Nanoparticle Dispersion in Red Blood Cell Suspension by the Lattice Boltzmann-Immersed Boundary Method.
    Tan J; Keller W; Sohrabi S; Yang J; Liu Y
    Nanomaterials (Basel); 2016 Feb; 6(2):. PubMed ID: 28344287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels.
    Boutchuen A; Zimmerman D; Arabshahi A; Melnyczuk J; Palchoudhury S
    Beilstein J Nanotechnol; 2020; 11():296-309. PubMed ID: 32117668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling particle shape-dependent dynamics in nanomedicine.
    Shah S; Liu Y; Hu W; Gao J
    J Nanosci Nanotechnol; 2011 Feb; 11(2):919-28. PubMed ID: 21399713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle transport and delivery in a heterogeneous pulmonary vasculature.
    Sohrabi S; Wang S; Tan J; Xu J; Yang J; Liu Y
    J Biomech; 2017 Jan; 50():240-247. PubMed ID: 27863742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stiffness can mediate balance between hydrodynamic forces and avidity to impact the targeting of flexible polymeric nanoparticles in flow.
    Farokhirad S; Ranganathan A; Myerson J; Muzykantov VR; Ayyaswamy PS; Eckmann DM; Radhakrishnan R
    Nanoscale; 2019 Apr; 11(14):6916-6928. PubMed ID: 30912772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles.
    Islam MA; Barua S; Barua D
    BMC Syst Biol; 2017 Nov; 11(1):113. PubMed ID: 29178887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale modeling of protein membrane interactions for nanoparticle targeting in drug delivery.
    Eckmann DM; Bradley RP; Kandy SK; Patil K; Janmey PA; Radhakrishnan R
    Curr Opin Struct Biol; 2020 Oct; 64():104-110. PubMed ID: 32731155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying nanoparticle adhesion mediated by specific molecular interactions.
    Haun JB; Hammer DA
    Langmuir; 2008 Aug; 24(16):8821-32. PubMed ID: 18630976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of transport and adhesion of thermogenic nano-carriers in microvessels.
    Yue K; You Y; Yang C; Niu Y; Zhang X
    Soft Matter; 2020 Dec; 16(45):10345-10357. PubMed ID: 33053003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Modeling of Tumor Response to Drug Release from Vasculature-Bound Nanoparticles.
    Curtis LT; Wu M; Lowengrub J; Decuzzi P; Frieboes HB
    PLoS One; 2015; 10(12):e0144888. PubMed ID: 26660469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extravasation of Brownian Spheroidal Nanoparticles through Vascular Pores.
    Shah PN; Lin TY; Aanei IL; Klass SH; Smith BR; Shaqfeh ESG
    Biophys J; 2018 Sep; 115(6):1103-1115. PubMed ID: 30201266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-Resolved MRI Assessment of Convection-Enhanced Delivery by Targeted and Nontargeted Nanoparticles in a Human Glioblastoma Mouse Model.
    Stephen ZR; Chiarelli PA; Revia RA; Wang K; Kievit F; Dayringer C; Jeon M; Ellenbogen R; Zhang M
    Cancer Res; 2019 Sep; 79(18):4776-4786. PubMed ID: 31331912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases.
    Sims LB; Miller HA; Halwes ME; Steinbach-Rankins JM; Frieboes HB
    Eur J Pharm Biopharm; 2019 May; 138():37-47. PubMed ID: 30195726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-throughput bioimaging study to assess the impact of chitosan-based nanoparticle degradation on DNA delivery performance.
    Gomes CP; Varela-Moreira A; Leiro V; Lopes CDF; Moreno PMD; Gomez-Lazaro M; Pêgo AP
    Acta Biomater; 2016 Dec; 46():129-140. PubMed ID: 27686038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.