These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23729953)

  • 1. The Structure of Agglomerates consisting of Polydisperse Particles.
    Eggersdorfer ML; Pratsinis SE
    Aerosol Sci Technol; 2012 Mar; 46(3):347-353. PubMed ID: 23729953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coagulation of Agglomerates Consisting of Polydisperse Primary Particles.
    Goudeli E; Eggersdorfer ML; Pratsinis SE
    Langmuir; 2016 Sep; 32(36):9276-85. PubMed ID: 27536889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobility and settling rate of agglomerates of polydisperse nanoparticles.
    Spyrogianni A; Karadima KS; Goudeli E; Mavrantzas VG; Pratsinis SE
    J Chem Phys; 2018 Feb; 148(6):064703. PubMed ID: 29448768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coagulation-agglomeration of fractal-like particles: structure and self-preserving size distribution.
    Goudeli E; Eggersdorfer ML; Pratsinis SE
    Langmuir; 2015 Feb; 31(4):1320-7. PubMed ID: 25560979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregate Morphology Evolution by Sintering: Number & Diameter of Primary Particles.
    Eggersdorfer ML; Kadau D; Herrmann HJ; Pratsinis SE
    J Aerosol Sci; 2012 Apr; 46():7-19. PubMed ID: 23658467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Monodisperse Population Balance Model for Nanoparticle Agglomeration in the Transition Regime.
    Kelesidis GA; Kholghy MR
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The self-preserving size distribution theory. I. Effects of the Knudsen number on aerosol agglomerate growth.
    Dekkers PJ; Friedlander SK
    J Colloid Interface Sci; 2002 Apr; 248(2):295-305. PubMed ID: 16290534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo Aggregation Code (MCAC) Part 2: Application to soot agglomeration, highlighting the importance of primary particles.
    Morán J; Yon J; Poux A; Corbin F; Ouf FX; Siméon A
    J Colloid Interface Sci; 2020 Sep; 575():274-285. PubMed ID: 32380319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect.
    Ku BK; Evans DE
    Aerosol Sci Technol; 2012 Apr; 46(4):473-84. PubMed ID: 26526560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiparticle sintering dynamics: from fractal-like aggregates to compact structures.
    Eggersdorfer ML; Kadau D; Herrmann HJ; Pratsinis SE
    Langmuir; 2011 May; 27(10):6358-67. PubMed ID: 21488641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid characterization of agglomerate aerosols by in situ mass-mobility measurements.
    Scheckman JH; McMurry PH; Pratsinis SE
    Langmuir; 2009 Jul; 25(14):8248-54. PubMed ID: 19594189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of diffusion charging and mobility-based methods for measurement of aerosol agglomerate surface area.
    Ku BK; Kulkarni P
    J Aerosol Sci; 2012 May; 47():100-110. PubMed ID: 26692585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Humidity on Silica Nanoparticle Agglomerate Morphology and Size Distribution.
    Kelesidis GA; Furrer FM; Wegner K; Pratsinis SE
    Langmuir; 2018 Jul; 34(29):8532-8541. PubMed ID: 29940739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collision limited reaction rates for arbitrarily shaped particles across the entire diffusive Knudsen number range.
    Gopalakrishnan R; Thajudeen T; Hogan CJ
    J Chem Phys; 2011 Aug; 135(5):054302. PubMed ID: 21823695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Practical Limitations of Aerosol Separation by a Tandem Differential Mobility Analyzer-Aerosol Particle Mass Analyzer.
    Radney JG; Zangmeister CD
    Aerosol Sci Technol; 2016; 50(2):160-172. PubMed ID: 28663667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method to determine the fractal dimension of diesel soot agglomerates.
    Lapuerta M; Ballesteros R; Martos FJ
    J Colloid Interface Sci; 2006 Nov; 303(1):149-58. PubMed ID: 16934823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of primary-particle density in the morphology of agglomerates.
    Camejo MD; Espeso DR; Bonilla LL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012306. PubMed ID: 25122302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation.
    Zook JM; Rastogi V; Maccuspie RI; Keene AM; Fagan J
    ACS Nano; 2011 Oct; 5(10):8070-9. PubMed ID: 21888410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft- and hard-agglomerate aerosols made at high temperatures.
    Tsantilis S; Pratsinis SE
    Langmuir; 2004 Jul; 20(14):5933-9. PubMed ID: 16459612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass-mobility characterization of flame-made ZrO2 aerosols: primary particle diameter and extent of aggregation.
    Eggersdorfer ML; Gröhn AJ; Sorensen CM; McMurry PH; Pratsinis SE
    J Colloid Interface Sci; 2012 Dec; 387(1):12-23. PubMed ID: 22959835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.