These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 23730945)

  • 21. Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure.
    Rahman MM; Glushenkov AM; Ramireddy T; Tao T; Chen Y
    Nanoscale; 2013 Jun; 5(11):4910-6. PubMed ID: 23624706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interface chemistry engineering of protein-directed SnO₂ nanocrystal-based anode for lithium-ion batteries with improved performance.
    Wang L; Wang D; Dong Z; Zhang F; Jin J
    Small; 2014 Mar; 10(5):998-1007. PubMed ID: 24170365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of Sn4+ on the structural and electronic properties of Ti1-xSnxO2 nanoparticles used as photocatalysts.
    Fresno F; Tudela D; Coronado JM; Fernández-García M; Hungría AB; Soria J
    Phys Chem Chem Phys; 2006 May; 8(20):2421-30. PubMed ID: 16710490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability.
    Wang Z; Luan D; Boey FY; Lou XW
    J Am Chem Soc; 2011 Apr; 133(13):4738-41. PubMed ID: 21401090
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanosize SnO₂ confined in the porous shells of carbon cages for kinetically efficient and long-term lithium storage.
    Zhou G; Wang DW; Li L; Li N; Li F; Cheng HM
    Nanoscale; 2013 Feb; 5(4):1576-82. PubMed ID: 23329149
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomineralized Sn-based multiphasic nanostructures for Li-ion battery electrodes.
    Lim AH; Shim HW; Seo SD; Lee GH; Park KS; Kim DW
    Nanoscale; 2012 Aug; 4(15):4694-701. PubMed ID: 22740101
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly monodispersed tin oxide/mesoporous starbust carbon composite as high-performance Li-ion battery anode.
    Chen J; Yano K
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7682-7. PubMed ID: 23947639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-limiting lithiation in silicon nanowires.
    Liu XH; Fan F; Yang H; Zhang S; Huang JY; Zhu T
    ACS Nano; 2013 Feb; 7(2):1495-503. PubMed ID: 23272994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanostructured 3D electrode architectures for high-rate Li-ion batteries.
    Haag JM; Pattanaik G; Durstock MF
    Adv Mater; 2013 Jun; 25(23):3238-43. PubMed ID: 23649670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. V2O5 loaded on SnO2 nanowires for high-rate li ion batteries.
    Yan J; Sumboja A; Khoo E; Lee PS
    Adv Mater; 2011 Feb; 23(6):746-50. PubMed ID: 21287635
    [No Abstract]   [Full Text] [Related]  

  • 31. Assembling CoSn3 nanoparticles on multiwalled carbon nanotubes with enhanced lithium storage properties.
    Zhai C; Du N; Zhang H; Yu J; Wu P; Xiao C; Yang D
    Nanoscale; 2011 Apr; 3(4):1798-801. PubMed ID: 21373652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SnO2@TiO2 double-shell nanotubes for a lithium ion battery anode with excellent high rate cyclability.
    Jeun JH; Park KY; Kim DH; Kim WS; Kim HC; Lee BS; Kim H; Yu WR; Kang K; Hong SH
    Nanoscale; 2013 Sep; 5(18):8480-3. PubMed ID: 23897097
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery.
    Qiu MC; Yang LW; Qi X; Li J; Zhong JX
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3614-8. PubMed ID: 21077626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion.
    Ganapathy S; Wagemaker M
    ACS Nano; 2012 Oct; 6(10):8702-12. PubMed ID: 22953788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. One-pot facile synthesis of Janus-structured SnO2-CuO composite nanorods and their application as anode materials in Li-ion batteries.
    Choi SH; Kang YC
    Nanoscale; 2013 Jun; 5(11):4662-8. PubMed ID: 23615939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The fast filling of nano-SnO2 in CNTs by vacuum absorption: a new approach to realize cyclic durable anodes for lithium ion batteries.
    Hu R; Sun W; Liu H; Zeng M; Zhu M
    Nanoscale; 2013 Dec; 5(23):11971-9. PubMed ID: 24136654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlling diffusion of lithium in silicon nanostructures.
    Chan TL; Chelikowsky JR
    Nano Lett; 2010 Mar; 10(3):821-5. PubMed ID: 20121259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solvothermal synthesis of hollow urchin-like SnO2 nanospheres with superior lithium storage behavior.
    Deng J; Chen Y; Ma J; Zhang E; Wang T
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4297-301. PubMed ID: 23862490
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Layer-by-layer synthesis of γ-Fe2O3@SnO2@C porous core-shell nanorods with high reversible capacity in lithium-ion batteries.
    Du N; Chen Y; Zhai C; Zhang H; Yang D
    Nanoscale; 2013 Jun; 5(11):4744-50. PubMed ID: 23599163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SnO(2) nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage.
    Kim JG; Nam SH; Lee SH; Choi SM; Kim WB
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):828-35. PubMed ID: 21344871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.