BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 23730946)

  • 1. Three-dimensional microfluidic collagen hydrogels for investigating flow-mediated tumor-endothelial signaling and vascular organization.
    Buchanan CF; Voigt EE; Szot CS; Freeman JW; Vlachos PP; Rylander MN
    Tissue Eng Part C Methods; 2014 Jan; 20(1):64-75. PubMed ID: 23730946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D microfluidic tumor vascular model.
    Buchanan CF; Verbridge SS; Vlachos PP; Rylander MN
    Cell Adh Migr; 2014; 8(5):517-24. PubMed ID: 25482628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions.
    Chen MB; Srigunapalan S; Wheeler AR; Simmons CA
    Lab Chip; 2013 Jul; 13(13):2591-8. PubMed ID: 23525275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro angiogenesis induced by tumor-endothelial cell co-culture in bilayered, collagen I hydrogel bioengineered tumors.
    Szot CS; Buchanan CF; Freeman JW; Rylander MN
    Tissue Eng Part C Methods; 2013 Nov; 19(11):864-74. PubMed ID: 23516987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D in vitro bioengineered tumors based on collagen I hydrogels.
    Szot CS; Buchanan CF; Freeman JW; Rylander MN
    Biomaterials; 2011 Nov; 32(31):7905-12. PubMed ID: 21782234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress.
    Butcher JT; Nerem RM
    Tissue Eng; 2006 Apr; 12(4):905-15. PubMed ID: 16674302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A contact line pinning based microfluidic platform for modelling physiological flows.
    Tung CK; Krupa O; Apaydin E; Liou JJ; Diaz-Santana A; Kim BJ; Wu M
    Lab Chip; 2013 Oct; 13(19):3876-85. PubMed ID: 23917952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Traction Forces of Endothelial Cells under Slow Shear Flow.
    Perrault CM; Brugues A; Bazellieres E; Ricco P; Lacroix D; Trepat X
    Biophys J; 2015 Oct; 109(8):1533-6. PubMed ID: 26488643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelialization of PVA/gelatin cryogels for vascular tissue engineering: effect of disturbed shear stress conditions.
    Vrana NE; Cahill PA; McGuinness GB
    J Biomed Mater Res A; 2010 Sep; 94(4):1080-90. PubMed ID: 20694975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishment of a three-dimensional model to study human uterine angiogenesis.
    Duran CL; Abbey CA; Bayless KJ
    Mol Hum Reprod; 2018 Feb; 24(2):74-93. PubMed ID: 29329415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shear stress-dependent cell detachment from temperature-responsive cell culture surfaces in a microfluidic device.
    Tang Z; Akiyama Y; Itoga K; Kobayashi J; Yamato M; Okano T
    Biomaterials; 2012 Oct; 33(30):7405-11. PubMed ID: 22818649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
    Heo DN; Hospodiuk M; Ozbolat IT
    Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microparticle image velocimetry approach to flow measurements in isolated contracting lymphatic vessels.
    Margaris KN; Nepiyushchikh Z; Zawieja DC; Moore J; Black RA
    J Biomed Opt; 2016 Feb; 21(2):25002. PubMed ID: 26830061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamic forces enhance decidualization via endothelial-derived prostaglandin E2 and prostacyclin in a microfluidic model of the human endometrium.
    Gnecco JS; Ding T; Smith C; Lu J; Bruner-Tran KL; Osteen KG
    Hum Reprod; 2019 Apr; 34(4):702-714. PubMed ID: 30789661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterning cells and shear flow conditions: convenient observation of endothelial cell remoulding, enhanced production of angiogenesis factors and drug response.
    Wang L; Zhang ZL; Wdzieczak-Bakala J; Pang DW; Liu J; Chen Y
    Lab Chip; 2011 Dec; 11(24):4235-40. PubMed ID: 22051695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local extensional flows promote long-range fiber alignment in 3D collagen hydrogels.
    Ahmed A; Mansouri M; Joshi IM; Byerley AM; Day SW; Gaborski TR; Abhyankar VV
    Biofabrication; 2022 Jun; 14(3):. PubMed ID: 35735228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.