These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23731256)

  • 41. Leaf hydraulic conductance is linked to leaf symmetry in bifacial, amphistomatic leaves of sunflower.
    Richardson F; Jordan GJ; Brodribb TJ
    J Exp Bot; 2020 May; 71(9):2808-2816. PubMed ID: 31970417
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stomatal density and aperture in non-vascular land plants are non-responsive to above-ambient atmospheric CO2 concentrations.
    Field KJ; Duckett JG; Cameron DD; Pressel S
    Ann Bot; 2015 May; 115(6):915-22. PubMed ID: 25858324
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Drought-induced shoot dieback starts with massive root xylem embolism and variable depletion of nonstructural carbohydrates in seedlings of two tree species.
    Rodríguez-Calcerrada J; Li M; López R; Cano FJ; Oleksyn J; Atkin OK; Pita P; Aranda I; Gil L
    New Phytol; 2017 Jan; 213(2):597-610. PubMed ID: 27575435
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transpiration, CO2 assimilation, WUE, and stomatal aperture in leaves of Viscum album (L.): Effect of abscisic acid (ABA) in the xylem sap of its host (Populus x euamericana).
    Escher P; Peuke AD; Bannister P; Fink S; Hartung W; Jiang F; Rennenberg H
    Plant Physiol Biochem; 2008 Jan; 46(1):64-70. PubMed ID: 18042393
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Changes in stomatal conductance along grass blades reflect changes in leaf structure.
    Ocheltree TW; Nippert JB; Prasad PV
    Plant Cell Environ; 2012 Jun; 35(6):1040-9. PubMed ID: 22146058
    [TBL] [Abstract][Full Text] [Related]  

  • 46. No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants?
    Franks PJ; Britton-Harper ZJ
    New Phytol; 2016 Aug; 211(3):819-27. PubMed ID: 27214852
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.
    Martorell S; Diaz-Espejo A; Medrano H; Ball MC; Choat B
    Plant Cell Environ; 2014 Mar; 37(3):617-26. PubMed ID: 23937187
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assimilate transport in phloem sets conditions for leaf gas exchange.
    Nikinmaa E; Hölttä T; Hari P; Kolari P; Mäkelä A; Sevanto S; Vesala T
    Plant Cell Environ; 2013 Mar; 36(3):655-69. PubMed ID: 22934921
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How does the VPD response of isohydric and anisohydric plants depend on leaf surface particles?
    Burkhardt J; Pariyar S
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():91-100. PubMed ID: 26417842
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intraspecific variation in embolism resistance and stem anatomy across four sunflower (Helianthus annuus L.) accessions.
    Ahmad HB; Lens F; Capdeville G; Burlett R; Lamarque LJ; Delzon S
    Physiol Plant; 2018 May; 163(1):59-72. PubMed ID: 29057474
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Super-elevated CO2 interferes with stomatal response to ABA and night closure in soybean (Glycine max).
    Levine LH; Richards JT; Wheeler RM
    J Plant Physiol; 2009 Jun; 166(9):903-13. PubMed ID: 19131142
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hydraulic functioning of tree stems--fusing ray anatomy, radial transfer and capacitance.
    Pfautsch S; Hölttä T; Mencuccini M
    Tree Physiol; 2015 Jul; 35(7):706-22. PubMed ID: 26163488
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plant resistance to drought depends on timely stomatal closure.
    Martin-StPaul N; Delzon S; Cochard H
    Ecol Lett; 2017 Nov; 20(11):1437-1447. PubMed ID: 28922708
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants.
    Romero P; Botía P; Keller M
    J Plant Physiol; 2017 Sep; 216():58-73. PubMed ID: 28577386
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Capacitive effect of cavitation in xylem conduits: results from a dynamic model.
    Hölttä T; Cochard H; Nikinmaa E; Mencuccini M
    Plant Cell Environ; 2009 Jan; 32(1):10-21. PubMed ID: 19076529
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum.
    Allen LH; Kakani VG; Vu JC; Boote KJ
    J Plant Physiol; 2011 Nov; 168(16):1909-18. PubMed ID: 21676489
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Xylem-phloem hydraulic coupling explains multiple osmoregulatory responses to salt stress.
    Perri S; Katul GG; Molini A
    New Phytol; 2019 Oct; 224(2):644-662. PubMed ID: 31349369
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L.
    Wang Y; Noguchi K; Terashima I
    Plant Cell Environ; 2008 Sep; 31(9):1307-16. PubMed ID: 18537998
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stomatal Closure, Basal Leaf Embolism, and Shedding Protect the Hydraulic Integrity of Grape Stems.
    Hochberg U; Windt CW; Ponomarenko A; Zhang YJ; Gersony J; Rockwell FE; Holbrook NM
    Plant Physiol; 2017 Jun; 174(2):764-775. PubMed ID: 28351909
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Wide vessels sustain marginal transpiration flux and do not optimize inefficient gas exchange activity under impaired hydraulic control and salinity.
    Jerszurki D; Sperling O; Parthasarathi T; Lichston JE; Yaaran A; Moshelion M; Rachmilevitch S; Lazarovitch N
    Physiol Plant; 2020 Sep; 170(1):60-74. PubMed ID: 32303105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.