These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 23731718)

  • 1. Pushing the science forward: chitosan nanoparticles and functional repair of CNS tissue after spinal cord injury.
    Chen B; Bohnert D; Borgens RB; Cho Y
    J Biol Eng; 2013; 7():15. PubMed ID: 23731718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan produces potent neuroprotection and physiological recovery following traumatic spinal cord injury.
    Cho Y; Shi R; Borgens RB
    J Exp Biol; 2010 May; 213(Pt 9):1513-20. PubMed ID: 20400636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional silica nanoparticle-mediated neuronal membrane sealing following traumatic spinal cord injury.
    Cho Y; Shi R; Ivanisevic A; Borgens RB
    J Neurosci Res; 2010 May; 88(7):1433-44. PubMed ID: 19998478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid recovery from spinal cord injury after subcutaneously administered polyethylene glycol.
    Borgens RB; Bohnert D
    J Neurosci Res; 2001 Dec; 66(6):1179-86. PubMed ID: 11746451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affinity for, and localization of, PEG-functionalized silica nanoparticles to sites of damage in an ex vivo spinal cord injury model.
    Chen B; Zuberi M; Borgens RB; Cho Y
    J Biol Eng; 2012 Sep; 6(1):18. PubMed ID: 22979980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute repair of crushed guinea pig spinal cord by polyethylene glycol.
    Shi R; Borgens RB
    J Neurophysiol; 1999 May; 81(5):2406-14. PubMed ID: 10322076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural regeneration therapy after spinal cord injury induces unique brain functional reorganizations in rhesus monkeys.
    Rao JS; Zhao C; Wei RH; Feng T; Bao SS; Zhao W; Tian Z; Liu Z; Yang ZY; Li XG
    Ann Med; 2022 Dec; 54(1):1867-1883. PubMed ID: 35792748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol.
    Shi R; Borgens RB
    J Neurocytol; 2000 Sep; 29(9):633-43. PubMed ID: 11353287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcutaneous tri-block copolymer produces recovery from spinal cord injury.
    Borgens RB; Bohnert D; Duerstock B; Spomar D; Lee RC
    J Neurosci Res; 2004 Apr; 76(1):141-54. PubMed ID: 15048938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The classification and identification of human somatic and parasympathetic nerve fibres including urinary bladder afferents and efferents is preserved following spinal cord injury.
    Schalow G
    Electromyogr Clin Neurophysiol; 2009; 49(6-7):263-86. PubMed ID: 19845099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioral recovery from spinal cord injury following delayed application of polyethylene glycol.
    Borgens RB; Shi R; Bohnert D
    J Exp Biol; 2002 Jan; 205(Pt 1):1-12. PubMed ID: 11818407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxyapatite From the Skull of Tuna (
    Ma CC; Wang XC; Tao NP
    Front Nutr; 2021; 8():734498. PubMed ID: 34497824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The therapeutic mechanism of transcranial iTBS on nerve regeneration and functional recovery in rats with complete spinal cord transection.
    Liu JL; Wang S; Chen ZH; Wu RJ; Yu HY; Yang SB; Xu J; Guo YN; Ding Y; Li G; Zeng X; Ma YH; Gong YL; Wu CR; Zhang LX; Zeng YS; Lai BQ
    Front Immunol; 2023; 14():1153516. PubMed ID: 37388732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning chitosan's chemical structure for enhanced biological functions.
    Aghbashlo M; Amiri H; Moosavi Basri SM; Rastegari H; Lam SS; Pan J; Gupta VK; Tabatabaei M
    Trends Biotechnol; 2023 Jun; 41(6):785-797. PubMed ID: 36535818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene oxide-composited chitosan scaffold contributes to functional recovery of injured spinal cord in rats.
    Yang B; Wang PB; Mu N; Ma K; Wang S; Yang CY; Huang ZB; Lai Y; Feng H; Yin GF; Chen TN; Hu CS
    Neural Regen Res; 2021 Sep; 16(9):1829-1835. PubMed ID: 33510090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroprotective ferulic acid (FA)-glycol chitosan (GC) nanoparticles for functional restoration of traumatically injured spinal cord.
    Wu W; Lee SY; Wu X; Tyler JY; Wang H; Ouyang Z; Park K; Xu XM; Cheng JX
    Biomaterials; 2014 Feb; 35(7):2355-2364. PubMed ID: 24332460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in axonal physiology and morphology after chronic compressive injury of the rat thoracic spinal cord.
    Nashmi R; Fehlings MG
    Neuroscience; 2001; 104(1):235-51. PubMed ID: 11311546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of DSPE-PEG on compound action potential, injury potential and ion concentration following compression in ex vivo spinal cord.
    Wang A; Huo X; Zhang G; Wang X; Zhang C; Wu C; Rong W; Xu J; Song T
    Neurosci Lett; 2016 May; 620():50-6. PubMed ID: 27021025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromyography in the detection of mechanically induced spinal motor tract injury: observations in diverse porcine models.
    Skinner SA; Transfeldt EE
    J Neurosurg Spine; 2009 Sep; 11(3):369-74. PubMed ID: 19769522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of intraspinal and intracranial conduction by P30 and P39 tibial nerve somatosensory evoked potentials in cervical cord, brainstem, and hemispheric lesions.
    Tinazzi M; Mauguière F
    J Clin Neurophysiol; 1995 May; 12(3):237-53. PubMed ID: 11221784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.