These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 23731756)

  • 1. Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass.
    Cha M; Chung D; Elkins JG; Guss AM; Westpheling J
    Biotechnol Biofuels; 2013 Jun; 6(1):85. PubMed ID: 23731756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii.
    Chung D; Cha M; Guss AM; Westpheling J
    Proc Natl Acad Sci U S A; 2014 Jun; 111(24):8931-6. PubMed ID: 24889625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome Stability in Engineered Strains of the Extremely Thermophilic Lignocellulose-Degrading Bacterium Caldicellulosiruptor bescii.
    Williams-Rhaesa AM; Poole FL; Dinsmore JT; Lipscomb GL; Rubinstein GM; Scott IM; Conway JM; Lee LL; Khatibi PA; Kelly RM; Adams MWW
    Appl Environ Microbiol; 2017 Jul; 83(14):. PubMed ID: 28476773
    [No Abstract]   [Full Text] [Related]  

  • 4. Metabolic engineering of Caldicellulosiruptor bescii for hydrogen production.
    Cha M; Kim JK; Lee WH; Song H; Lee TG; Kim SK; Kim SJ
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):65. PubMed ID: 38194138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of
    Tanwee TNN; Lipscomb GL; Vailionis JL; Zhang K; Bing RG; O'Quinn HC; Poole FL; Zhang Y; Kelly RM; Adams MWW
    Appl Environ Microbiol; 2024 Jan; 90(1):e0195123. PubMed ID: 38131671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulosic ethanol production via consolidated bioprocessing at 75 °C by engineered Caldicellulosiruptor bescii.
    Chung D; Cha M; Snyder EN; Elkins JG; Guss AM; Westpheling J
    Biotechnol Biofuels; 2015; 8():163. PubMed ID: 26442761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification.
    Chung D; Verbeke TJ; Cross KL; Westpheling J; Elkins JG
    Biotechnol Biofuels; 2015; 8():102. PubMed ID: 26203301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Highly Thermostable Kanamycin Resistance Marker Expands the Tool Kit for Genetic Manipulation of Caldicellulosiruptor bescii.
    Lipscomb GL; Conway JM; Blumer-Schuette SE; Kelly RM; Adams MWW
    Appl Environ Microbiol; 2016 Jul; 82(14):4421-4428. PubMed ID: 27208106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolically engineered Caldicellulosiruptor bescii as a platform for producing acetone and hydrogen from lignocellulose.
    Straub CT; Bing RG; Otten JK; Keller LM; Zeldes BM; Adams MWW; Kelly RM
    Biotechnol Bioeng; 2020 Dec; 117(12):3799-3808. PubMed ID: 32770740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexpression of a β-d-Xylosidase from Thermotoga maritima and a Family 10 Xylanase from Acidothermus cellulolyticus Significantly Improves the Xylan Degradation Activity of the Caldicellulosiruptor bescii Exoproteome.
    Kim SK; Russell J; Cha M; Himmel ME; Bomble YJ; Westpheling J
    Appl Environ Microbiol; 2021 Jun; 87(14):e0052421. PubMed ID: 33990300
    [No Abstract]   [Full Text] [Related]  

  • 11. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile
    Rodionov DA; Rodionova IA; Rodionov VA; Arzamasov AA; Zhang K; Rubinstein GM; Tanwee TNN; Bing RG; Crosby JR; Nookaew I; Basen M; Brown SD; Wilson CM; Klingeman DM; Poole FL; Zhang Y; Kelly RM; Adams MWW
    mSystems; 2021 Jun; 6(3):e0134520. PubMed ID: 34060910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of a gene cluster for [Ni-Fe] hydrogenase maturation in the anaerobic hyperthermophilic bacterium Caldicellulosiruptor bescii identifies its role in hydrogen metabolism.
    Cha M; Chung D; Westpheling J
    Appl Microbiol Biotechnol; 2016 Feb; 100(4):1823-1831. PubMed ID: 26536872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering the cellulolytic extreme thermophile Caldicellulosiruptor bescii to reduce carboxylic acids to alcohols using plant biomass as the energy source.
    Rubinstein GM; Lipscomb GL; Williams-Rhaesa AM; Schut GJ; Kelly RM; Adams MWW
    J Ind Microbiol Biotechnol; 2020 Aug; 47(8):585-597. PubMed ID: 32783103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction.
    Conway JM; McKinley BS; Seals NL; Hernandez D; Khatibi PA; Poudel S; Giannone RJ; Hettich RL; Williams-Rhaesa AM; Lipscomb GL; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering redox-balanced ethanol production in the cellulolytic and extremely thermophilic bacterium,
    Williams-Rhaesa AM; Rubinstein GM; Scott IM; Lipscomb GL; Poole Ii FL; Kelly RM; Adams MWW
    Metab Eng Commun; 2018 Dec; 7():e00073. PubMed ID: 30009131
    [No Abstract]   [Full Text] [Related]  

  • 16. Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii.
    Basen M; Rhaesa AM; Kataeva I; Prybol CJ; Scott IM; Poole FL; Adams MW
    Bioresour Technol; 2014; 152():384-92. PubMed ID: 24316482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen Production from Barley Straw and Miscanthus by the Hyperthermophilic Bacterium,
    Cha M; Kim JH; Choi HJ; Nho SB; Kim SY; Cha YL; Song H; Lee WH; Kim SK; Kim SJ
    J Microbiol Biotechnol; 2023 Oct; 33(10):1384-1389. PubMed ID: 37463861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Scale Metabolic Model of
    Zhang K; Zhao W; Rodionov DA; Rubinstein GM; Nguyen DN; Tanwee TNN; Crosby J; Bing RG; Kelly RM; Adams MWW; Zhang Y
    mSystems; 2021 Jun; 6(3):e0135120. PubMed ID: 34060912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach.
    Yee KL; Rodriguez M; Tschaplinski TJ; Engle NL; Martin MZ; Fu C; Wang ZY; Hamilton-Brehm SD; Mielenz JR
    Biotechnol Biofuels; 2012 Nov; 5(1):81. PubMed ID: 23146305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterologous expression of family 10 xylanases from Acidothermus cellulolyticus enhances the exoproteome of Caldicellulosiruptor bescii and growth on xylan substrates.
    Kim SK; Chung D; Himmel ME; Bomble YJ; Westpheling J
    Biotechnol Biofuels; 2016; 9(1):176. PubMed ID: 27555882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.