These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23731756)

  • 21. Native xylose-inducible promoter expands the genetic tools for the biomass-degrading, extremely thermophilic bacterium Caldicellulosiruptor bescii.
    Williams-Rhaesa AM; Awuku NK; Lipscomb GL; Poole FL; Rubinstein GM; Conway JM; Kelly RM; Adams MWW
    Extremophiles; 2018 Jul; 22(4):629-638. PubMed ID: 29797090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum.
    Papanek B; Biswas R; Rydzak T; Guss AM
    Metab Eng; 2015 Nov; 32():49-54. PubMed ID: 26369438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A New Class of Tungsten-Containing Oxidoreductase in Caldicellulosiruptor, a Genus of Plant Biomass-Degrading Thermophilic Bacteria.
    Scott IM; Rubinstein GM; Lipscomb GL; Basen M; Schut GJ; Rhaesa AM; Lancaster WA; Poole FL; Kelly RM; Adams MW
    Appl Environ Microbiol; 2015 Oct; 81(20):7339-47. PubMed ID: 26276113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement.
    Chung D; Farkas J; Westpheling J
    Biotechnol Biofuels; 2013 May; 6(1):82. PubMed ID: 23714229
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterologous expression of a β-D-glucosidase in Caldicellulosiruptor bescii has a surprisingly modest effect on the activity of the exoproteome and growth on crystalline cellulose.
    Kim SK; Chung D; Himmel ME; Bomble YJ; Westpheling J
    J Ind Microbiol Biotechnol; 2017 Dec; 44(12):1643-1651. PubMed ID: 28942503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene targets for engineering osmotolerance in
    Sander KB; Chung D; Klingeman DM; Giannone RJ; Rodriguez M; Whitham J; Hettich RL; Davison BH; Westpheling J; Brown SD
    Biotechnol Biofuels; 2020; 13():50. PubMed ID: 32190115
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses.
    Lee LL; Blumer-Schuette SE; Izquierdo JA; Zurawski JV; Loder AJ; Conway JM; Elkins JG; Podar M; Clum A; Jones PC; Piatek MJ; Weighill DA; Jacobson DA; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29475869
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lignocellulose solubilization and conversion by extremely thermophilic Caldicellulosiruptor bescii improves by maintaining metabolic activity.
    Straub CT; Khatibi PA; Otten JK; Adams MWW; Kelly RM
    Biotechnol Bioeng; 2019 Aug; 116(8):1901-1908. PubMed ID: 30982956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterologous co-expression of two β-glucanases and a cellobiose phosphorylase resulted in a significant increase in the cellulolytic activity of the Caldicellulosiruptor bescii exoproteome.
    Kim SK; Chung D; Himmel ME; Bomble YJ; Westpheling J
    J Ind Microbiol Biotechnol; 2019 May; 46(5):687-695. PubMed ID: 30783893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rex in Caldicellulosiruptor bescii: Novel regulon members and its effect on the production of ethanol and overflow metabolites.
    Sander K; Chung D; Hyatt D; Westpheling J; Klingeman DM; Rodriguez M; Engle NL; Tschaplinski TJ; Davison BH; Brown SD
    Microbiologyopen; 2019 Feb; 8(2):e00639. PubMed ID: 29797457
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii.
    Zurawski JV; Khatibi PA; Akinosho HO; Straub CT; Compton SH; Conway JM; Lee LL; Ragauskas AJ; Davison BH; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative Analysis of Extremely Thermophilic Caldicellulosiruptor Species Reveals Common and Unique Cellular Strategies for Plant Biomass Utilization.
    Zurawski JV; Conway JM; Lee LL; Simpson HJ; Izquierdo JA; Blumer-Schuette S; Nookaew I; Adams MW; Kelly RM
    Appl Environ Microbiol; 2015 Oct; 81(20):7159-70. PubMed ID: 26253670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus.
    Chung D; Cha M; Farkas J; Westpheling J
    PLoS One; 2013; 8(5):e62881. PubMed ID: 23658781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering
    Bashir Z; Sheng L; Anil A; Lali A; Minton NP; Zhang Y
    Biotechnol Biofuels; 2019; 12():199. PubMed ID: 31452680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deletion of the Clostridium thermocellum recA gene reveals that it is required for thermophilic plasmid replication but not plasmid integration at homologous DNA sequences.
    Groom J; Chung D; Kim SK; Guss A; Westpheling J
    J Ind Microbiol Biotechnol; 2018 Aug; 45(8):753-763. PubMed ID: 29808293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and bioinformatic analysis of a novel transposable element, ISCbe4, from the hyperthermophilic bacterium, Caldicellulosiruptor bescii.
    Cha M; Wang H; Chung D; Bennetzen JL; Westpheling J
    J Ind Microbiol Biotechnol; 2013 Dec; 40(12):1443-8. PubMed ID: 24081709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations.
    Li Y; Tschaplinski TJ; Engle NL; Hamilton CY; Rodriguez M; Liao JC; Schadt CW; Guss AM; Yang Y; Graham DE
    Biotechnol Biofuels; 2012 Jan; 5(1):2. PubMed ID: 22214220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria.
    Svetlitchnyi VA; Kensch O; Falkenhan DA; Korseska SG; Lippert N; Prinz M; Sassi J; Schickor A; Curvers S
    Biotechnol Biofuels; 2013 Feb; 6(1):31. PubMed ID: 23448304
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium
    Poudel S; Giannone RJ; Basen M; Nookaew I; Poole FL; Kelly RM; Adams MWW; Hettich RL
    Biotechnol Biofuels; 2018; 11():80. PubMed ID: 29588665
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering a hyperthermophilic archaeon for temperature-dependent product formation.
    Basen M; Sun J; Adams MW
    mBio; 2012; 3(2):e00053-12. PubMed ID: 22511351
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.