BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

804 related articles for article (PubMed ID: 23731784)

  • 1. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.
    Yüksel S; Kabay N; Yüksel M
    J Hazard Mater; 2013 Dec; 263 Pt 2():307-10. PubMed ID: 23731784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and effect of biofouling on polyamide reverse osmosis and nanofiltration membrane surfaces.
    Khan MM; Stewart PS; Moll DJ; Mickols WE; Nelson SE; Camper AK
    Biofouling; 2011 Feb; 27(2):173-83. PubMed ID: 21253926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis.
    Xie M; Nghiem LD; Price WE; Elimelech M
    Water Res; 2012 May; 46(8):2683-92. PubMed ID: 22402269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rejection of trace organic compounds by high-pressure membranes.
    Kim TU; Amy G; Drewes JE
    Water Sci Technol; 2005; 51(6-7):335-44. PubMed ID: 16003994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behaviour of RO98pHt polyamide membrane in reverse osmosis and low reverse osmosis conditions for phenol removal.
    Hidalgo AM; León G; Gómez M; Murcia MD; Gómez E; Gómez JL
    Environ Technol; 2011 Oct; 32(13-14):1497-502. PubMed ID: 22329140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capturing hormones and bisphenol A from water via sustained hydrogen bond driven sorption in polyamide microfiltration membranes.
    Han J; Meng S; Dong Y; Hu J; Gao W
    Water Res; 2013 Jan; 47(1):197-208. PubMed ID: 23127621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of different nanofiltration and reverse osmosis membranes for simultaneous removal of arsenic and boron from spent geothermal water.
    Jarma YA; Karaoğlu A; Tekin Ö; Baba A; Ökten HE; Tomaszewska B; Bostancı K; Arda M; Kabay N
    J Hazard Mater; 2021 Mar; 405():124129. PubMed ID: 33082019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward improved boron removal in RO by membrane modification: feasibility and challenges.
    Bernstein R; Belfer S; Freger V
    Environ Sci Technol; 2011 Apr; 45(8):3613-20. PubMed ID: 21417224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Treatment of Bisphenol A (BPA) in water using UV/H
    Moreira CG; Moreira MH; Silva VMOC; Santos HG; Bila DM; Fonseca FV
    Water Sci Technol; 2019 Dec; 80(11):2169-2178. PubMed ID: 32198334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of endocrine disrupting compounds with membrane processes in wastewater treatment and reuse.
    Wintgens T; Gallenkemper M; Melin T
    Water Sci Technol; 2004; 50(5):1-8. PubMed ID: 15497822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficiency of RO/NF membranes at the removal of veterinary antibiotics.
    Dolar D; Vuković A; Ašperger D; Košutić K
    Water Sci Technol; 2012; 65(2):317-23. PubMed ID: 22233911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of water matrices on removal of veterinary pharmaceuticals by nanofiltration and reverse osmosis membranes.
    Dolar D; Vuković A; Asperger D; Kosutić K
    J Environ Sci (China); 2011; 23(8):1299-307. PubMed ID: 22128537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes.
    Kimura K; Iwase T; Kita S; Watanabe Y
    Water Res; 2009 Aug; 43(15):3751-8. PubMed ID: 19564034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications.
    Xu P; Drewes JE; Bellona C; Amy G; Kim TU; Adam M; Heberer T
    Water Environ Res; 2005; 77(1):40-8. PubMed ID: 15765934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes.
    Yoon J; Amy G; Chung J; Sohn J; Yoon Y
    Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of reverse osmosis (RO) for reuse of MBR-treated wastewater in irrigation-preliminary tests and quality analysis of product water.
    Bunani S; Yörükoğlu E; Sert G; Kabay N; Yüksel Ü; Yüksel M; Egemen Ö; Pek TÖ
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3030-3037. PubMed ID: 25689918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: a pilot-scale study.
    Bellona C; Drewes JE
    Water Res; 2007 Sep; 41(17):3948-58. PubMed ID: 17582458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and quantification of bisphenol A by gas chromatography and mass spectrometry in a lab-scale dual membrane system.
    Hu JY; Yuan T; Ong SL; Song LF; Ng WJ
    J Environ Monit; 2003 Feb; 5(1):141-4. PubMed ID: 12619769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced partitioning and transport of phenolic micropollutants within polyamide composite membranes.
    Drazevic E; Bason S; Kosutic K; Freger V
    Environ Sci Technol; 2012 Mar; 46(6):3377-83. PubMed ID: 22260225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.