These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 23731958)

  • 1. Effect of concentric and eccentric velocity during heavy-load non-ballistic elbow flexion resistance exercise.
    Sampson JA; Donohoe A; Groeller H
    J Sci Med Sport; 2014 May; 17(3):306-11. PubMed ID: 23731958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is repetition failure critical for the development of muscle hypertrophy and strength?
    Sampson JA; Groeller H
    Scand J Med Sci Sports; 2016 Apr; 26(4):375-83. PubMed ID: 25809472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potentiation of concentric force and acceleration only occurs early during the stretch-shortening cycle.
    McCarthy JP; Wood DS; Bolding MS; Roy JL; Hunter GR
    J Strength Cond Res; 2012 Sep; 26(9):2345-55. PubMed ID: 22692115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eccentric exercise increases EMG amplitude and force fluctuations during submaximal contractions of elbow flexor muscles.
    Semmler JG; Tucker KJ; Allen TJ; Proske U
    J Appl Physiol (1985); 2007 Sep; 103(3):979-89. PubMed ID: 17600154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between muscle power output using the stretch-shortening cycle and eccentric maximum strength.
    Miyaguchi K; Demura S
    J Strength Cond Res; 2008 Nov; 22(6):1735-41. PubMed ID: 18841080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocity-specific training in elbow flexors.
    Pousson M; Amiridis IG; Cometti G; Van Hoecke J
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):367-72. PubMed ID: 10483808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromuscular control following maximal eccentric exercise.
    Miles MP; Ives JC; Vincent KR
    Eur J Appl Physiol Occup Physiol; 1997; 76(4):368-74. PubMed ID: 9349654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An isokinetic investigation of contractile mode's effect on the elbow flexors.
    Caruso JF; Skelly WA; Cook TD; Gibb GJ; Mercado DR; Meier ML
    J Strength Cond Res; 2001 Feb; 15(1):69-74. PubMed ID: 11708710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of shoulder position on triceps brachii heads activity in dumbbell elbow extension exercises.
    Alves D; Matta T; Oliveira L
    J Sports Med Phys Fitness; 2018 Sep; 58(9):1247-1252. PubMed ID: 28677940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Full Range of Motion Induces Greater Muscle Damage Than Partial Range of Motion in Elbow Flexion Exercise With Free Weights.
    Baroni BM; Pompermayer MG; Cini A; Peruzzolo AS; Radaelli R; Brusco CM; Pinto RS
    J Strength Cond Res; 2017 Aug; 31(8):2223-2230. PubMed ID: 27398917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positioning during resistance elbow flexor exercise affects electromyographic activity, heart rate, and perceived exertion.
    Oliveira AS; Gonçalves M
    J Strength Cond Res; 2009 May; 23(3):854-62. PubMed ID: 19387393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifiability of the history dependence of force through chronic eccentric and concentric biased resistance training.
    Chen J; Power GA
    J Appl Physiol (1985); 2019 Mar; 126(3):647-657. PubMed ID: 30571280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical manifestations of muscle fatigue during concentric and eccentric isokinetic knee flexion-extension movements.
    Molinari F; Knaflitz M; Bonato P; Actis MV
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1309-16. PubMed ID: 16830935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coactivation of the elbow antagonist muscles is not affected by the speed of movement in isokinetic exercise.
    Bazzucchi I; Sbriccoli P; Marzattinocci G; Felici F
    Muscle Nerve; 2006 Feb; 33(2):191-9. PubMed ID: 16307438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle activation differences between eccentric and concentric isokinetic exercise.
    Kellis E; Baltzopoulos V
    Med Sci Sports Exerc; 1998 Nov; 30(11):1616-23. PubMed ID: 9813875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myoelectric activity during electromagnetic resistance alone and in combination with variable resistance or eccentric overload.
    Zambrano H; Torres X; Coleman M; Franchi MV; Fisher JP; Oberlin D; Van Hooren B; Swinton PA; Schoenfeld BJ
    Sci Rep; 2023 May; 13(1):8212. PubMed ID: 37217559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements.
    Newton RU; Murphy AJ; Humphries BJ; Wilson GJ; Kraemer WJ; Häkkinen K
    Eur J Appl Physiol Occup Physiol; 1997; 75(4):333-42. PubMed ID: 9134365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EMG power spectrum and features of the superimposed M-wave during voluntary eccentric and concentric actions at different activation levels.
    Linnamo V; Strojnik V; Komi PV
    Eur J Appl Physiol; 2002 Apr; 86(6):534-40. PubMed ID: 11944102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of eccentric phase velocity of plyometric training on the vertical jump.
    Toumi H; Best TM; Martin A; F'Guyer S; Poumarat G
    Int J Sports Med; 2004 Jul; 25(5):391-8. PubMed ID: 15241721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle activation during leg-press exercise with or without eccentric overload.
    Sarto F; Franchi MV; Rigon PA; Grigoletto D; Zoffoli L; Zanuso S; Narici MV
    Eur J Appl Physiol; 2020 Jul; 120(7):1651-1656. PubMed ID: 32447452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.