BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 23732003)

  • 1. A novel mechanism of bisphenol A removal during electro-enzymatic oxidative process: chain reactions from self-polymerization to cross-coupling oxidation.
    Li H; Zhao H; Liu C; Li Y; Cao H; Zhang Y
    Chemosphere; 2013 Aug; 92(10):1294-300. PubMed ID: 23732003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combination of electro-enzymatic catalysis and electrocoagulation for the removal of endocrine disrupting chemicals from water.
    Zhao H; Zhang D; Du P; Li H; Liu C; Li Y; Cao H; Crittenden JC; Huang Q
    J Hazard Mater; 2015 Oct; 297():269-77. PubMed ID: 25978190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of optimum process parameters for peroxidase-catalysed treatment of bisphenol A and application to the removal of bisphenol derivatives.
    Yamada K; Ikeda N; Takano Y; Kashiwada A; Matsuda K; Hirata M
    Environ Technol; 2010 Mar; 31(3):243-56. PubMed ID: 20426266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Removal of EDCs(BPA) by ultrafiltration and impact factors].
    Wang L; Dong BZ; Gao NY
    Huan Jing Ke Xue; 2007 Feb; 28(2):329-34. PubMed ID: 17489192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of dissolved organic matter by oxidative polymerization with horseradish peroxidase.
    Jee SH; Kim YJ; Ko SO
    Water Sci Technol; 2010; 62(2):340-6. PubMed ID: 20651438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical removal of bisphenol A based on the anodic polymerization using a column type carbon fiber electrode.
    Kuramitz H; Matsushita M; Tanaka S
    Water Res; 2004 May; 38(9):2330-7. PubMed ID: 15142794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mineralization of bisphenol A (BPA) by anodic oxidation with boron-doped diamond (BDD) electrode.
    Murugananthan M; Yoshihara S; Rakuma T; Shirakashi T
    J Hazard Mater; 2008 Jun; 154(1-3):213-20. PubMed ID: 18023975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation and removal of bisphenol A from aqueous phase via peroxidase mediated oxidative coupling reactions: efficacy, products, and pathways.
    Huang Q; Weber WJ
    Environ Sci Technol; 2005 Aug; 39(16):6029-36. PubMed ID: 16173560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O8(2-) oxidation systems.
    Sharma J; Mishra IM; Kumar V
    J Environ Manage; 2015 Jun; 156():266-75. PubMed ID: 25889275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bisphenol A removal from wastewater using self-organized TIO(2) nanotubular array electrodes.
    Brugnera MF; Rajeshwar K; Cardoso JC; Zanoni MV
    Chemosphere; 2010 Jan; 78(5):569-75. PubMed ID: 20035965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bisphenol A degradation in water by ligninolytic enzymes.
    Gassara F; Brar SK; Verma M; Tyagi RD
    Chemosphere; 2013 Aug; 92(10):1356-60. PubMed ID: 23668961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced removal of bisphenol A from contaminated soil by coupling Bacillus subtilis HV-3 with electrochemical system.
    Mohan H; Lim JM; Lee SW; Cho M; Park YJ; Seralathan KK; Oh BT
    Chemosphere; 2020 Jun; 249():126083. PubMed ID: 32045753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decontamination activity of ryegrass exudates towards bisphenol A in the absence and presence of dissolved natural organic matter.
    Gattullo CE; Kiersch K; Eckhardt KU; Baum C; Leinweber P; Loffredo E
    Int J Phytoremediation; 2015; 17(1-6):1-8. PubMed ID: 25174419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential use of two aryl sulfotransferase cell-surface display systems to detoxify the endocrine disruptor bisphenol A.
    Nanudorn P; Thiengmag S; Whangsuk W; Mongkolsuk S; Loprasert S
    Biochem Biophys Res Commun; 2020 Aug; 528(4):691-697. PubMed ID: 32513533
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of bisphenol A by adsorption mechanism using PES-SiO2 composite membranes.
    Muhamad MS; Salim MR; Lau WJ; Hadibarata T; Yusop Z
    Environ Technol; 2016 Aug; 37(15):1959-69. PubMed ID: 26729509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activated carbons impregnated with iron oxide nanoparticles for enhanced removal of bisphenol A and natural organic matter.
    Park HS; Koduru JR; Choo KH; Lee B
    J Hazard Mater; 2015 Apr; 286():315-24. PubMed ID: 25594935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation, products, and pathways of chlorophenols via electro-enzymatic catalysis: How to control toxic intermediate products.
    Du P; Zhao H; Li H; Zhang D; Huang CH; Deng M; Liu C; Cao H
    Chemosphere; 2016 Feb; 144():1674-81. PubMed ID: 26519798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of bisphenol A by a nanofiltration membrane in view of drinking water production.
    Zhang Y; Causserand C; Aimar P; Cravedi JP
    Water Res; 2006 Dec; 40(20):3793-9. PubMed ID: 17074381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroenzymatic oxidation of bisphenol A (BPA) based on the hemoglobin (Hb) film in a membraneless electrochemical reactor.
    Tang T; Hou J; Ai S; Qiu Y; Ma Q; Han R
    J Hazard Mater; 2010 Sep; 181(1-3):413-8. PubMed ID: 20605681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A.
    Xu R; Chi C; Li F; Zhang B
    Bioresour Technol; 2013 Dec; 149():111-6. PubMed ID: 24096278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.