These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23732219)

  • 21. [Structural and Functional Studies on Photoactive Retinal Proteins: Light Becomes Drugs with Proteins].
    Sudo Y
    Yakugaku Zasshi; 2016; 136(2):185-9. PubMed ID: 26831791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substitution of Pro206 and Ser86 residues in the retinal binding pocket of Anabaena sensory rhodopsin is not sufficient for proton pumping function.
    Choi AR; Kim SY; Yoon SR; Bae K; Jung KH
    J Microbiol Biotechnol; 2007 Jan; 17(1):138-45. PubMed ID: 18051365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer.
    Klare JP; Gordeliy VI; Labahn J; Büldt G; Steinhoff HJ; Engelhard M
    FEBS Lett; 2004 Apr; 564(3):219-24. PubMed ID: 15111099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Early structural rearrangements in the photocycle of an integral membrane sensory receptor.
    Edman K; Royant A; Nollert P; Maxwell CA; Pebay-Peyroula E; Navarro J; Neutze R; Landau EM
    Structure; 2002 Apr; 10(4):473-82. PubMed ID: 11937052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transmembrane signal transduction in archaeal phototaxis: the sensory rhodopsin II-transducer complex studied by electron paramagnetic resonance spectroscopy.
    Klare JP; Bordignon E; Engelhard M; Steinhoff HJ
    Eur J Cell Biol; 2011 Sep; 90(9):731-9. PubMed ID: 21684631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrostatic potential at the retinal of three archaeal rhodopsins: implications for their different absorption spectra.
    Kloppmann E; Becker T; Ullmann GM
    Proteins; 2005 Dec; 61(4):953-65. PubMed ID: 16247786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variations on a molecular switch: transport and sensory signalling by archaeal rhodopsins.
    Spudich JL
    Mol Microbiol; 1998 Jun; 28(6):1051-8. PubMed ID: 9680197
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors.
    Klare JP; Chizhov I; Engelhard M
    Results Probl Cell Differ; 2008; 45():73-122. PubMed ID: 17898961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficient femtosecond energy transfer from carotenoid to retinal in gloeobacter rhodopsin-salinixanthin complex.
    Iyer ES; Gdor I; Eliash T; Sheves M; Ruhman S
    J Phys Chem B; 2015 Feb; 119(6):2345-9. PubMed ID: 25144664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spotlight on receptor/transducer interaction.
    Spudich J
    Nat Struct Biol; 2002 Nov; 9(11):797-9. PubMed ID: 12402035
    [No Abstract]   [Full Text] [Related]  

  • 31. Ground state structure of D75N mutant of sensory rhodopsin II in complex with its cognate transducer.
    Ishchenko A; Round E; Borshchevskiy V; Grudinin S; Gushchin I; Klare JP; Balandin T; Remeeva A; Engelhard M; Büldt G; Gordeliy V
    J Photochem Photobiol B; 2013 Jun; 123():55-8. PubMed ID: 23619282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular mechanism of photosignaling by archaeal sensory rhodopsins.
    Hoff WD; Jung KH; Spudich JL
    Annu Rev Biophys Biomol Struct; 1997; 26():223-58. PubMed ID: 9241419
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Induced chirality of the light-harvesting carotenoid salinixanthin and its interaction with the retinal of xanthorhodopsin.
    Balashov SP; Imasheva ES; Lanyi JK
    Biochemistry; 2006 Sep; 45(36):10998-1004. PubMed ID: 16953586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties.
    Sudo Y; Ihara K; Kobayashi S; Suzuki D; Irieda H; Kikukawa T; Kandori H; Homma M
    J Biol Chem; 2011 Feb; 286(8):5967-76. PubMed ID: 21135094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation.
    Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y
    J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 A.
    Vogeley L; Sineshchekov OA; Trivedi VD; Sasaki J; Spudich JL; Luecke H
    Science; 2004 Nov; 306(5700):1390-3. PubMed ID: 15459346
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformation and dynamics of the [3-(13)C]Ala, [1-(13)C]Val-labeled truncated pharaonis transducer, pHtrII(1-159), as revealed by site-directed (13)C solid-state NMR: changes due to association with phoborhodopsin (sensory rhodopsin II).
    Yamaguchi S; Shimono K; Sudo Y; Tuzi S; Naito A; Kamo N; Saitô H
    Biophys J; 2004 May; 86(5):3131-40. PubMed ID: 15111426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel.
    Lórenz-Fonfría VA; Heberle J
    Biochim Biophys Acta; 2014 May; 1837(5):626-42. PubMed ID: 24212055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of 6s-trans conformation of retinal chromophore in sensory rhodopsin I and phoborhodopsin.
    Wada A; Akai A; Goshima T; Takahashi T; Ito M
    Bioorg Med Chem Lett; 1998 Jun; 8(11):1365-8. PubMed ID: 9871767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tyr-199 and charged residues of pharaonis Phoborhodopsin are important for the interaction with its transducer.
    Sudo Y; Iwamoto M; Shimono K; Kamo N
    Biophys J; 2002 Jul; 83(1):427-32. PubMed ID: 12080131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.