BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23732302)

  • 1. Theoretical study on the proton shuttle mechanism of saccharopine dehydrogenase.
    Sheng X; Gao J; Liu Y; Liu C
    J Mol Graph Model; 2013 Jul; 44():17-25. PubMed ID: 23732302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proposed proton shuttle mechanism for saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; Alguindigue SS; West AH; Cook PF
    Biochemistry; 2007 Jan; 46(3):871-82. PubMed ID: 17223709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Kumar VP; Thomas LM; Bobyk KD; Andi B; Cook PF; West AH
    Biochemistry; 2012 Jan; 51(4):857-66. PubMed ID: 22243403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of ligand-bound saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Andi B; Xu H; Cook PF; West AH
    Biochemistry; 2007 Nov; 46(44):12512-21. PubMed ID: 17939687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overall kinetic mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Xu H; West AH; Cook PF
    Biochemistry; 2006 Oct; 45(39):12156-66. PubMed ID: 17002315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural studies of the final enzyme in the alpha-aminoadipate pathway-saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Burk DL; Hwang J; Kwok E; Marrone L; Goodfellow V; Dmitrienko GI; Berghuis AM
    J Mol Biol; 2007 Oct; 373(3):745-54. PubMed ID: 17854830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supporting role of lysine 13 and glutamate 16 in the acid-base mechanism of saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Kumar VP; West AH; Cook PF
    Arch Biochem Biophys; 2012 Jun; 522(1):57-61. PubMed ID: 22521736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of the bifunctional enzyme lysine 2-oxoglutarate reductase-saccharopine dehydrogenase from Phaseolus vulgaris.
    Cunha Lima ST; Azevedo RA; Santoro LG; Gaziola SA; Lea PJ
    Amino Acids; 2003; 24(1-2):179-86. PubMed ID: 12624751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The oxidation state of active site thiols determines activity of saccharopine dehydrogenase at low pH.
    Bobyk KD; Kim SG; Kumar VP; Kim SK; West AH; Cook PF
    Arch Biochem Biophys; 2011 Sep; 513(2):71-80. PubMed ID: 21798231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overall kinetic mechanism of saccharopine dehydrogenase (L-glutamate forming) from Saccharomyces cerevisiae.
    Vashishtha AK; West AH; Cook PF
    Biochemistry; 2008 May; 47(19):5417-23. PubMed ID: 18416559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of saccharopine reductase from Magnaporthe grisea, an enzyme of the alpha-aminoadipate pathway of lysine biosynthesis.
    Johansson E; Steffens JJ; Lindqvist Y; Schneider G
    Structure; 2000 Oct; 8(10):1037-47. PubMed ID: 11080625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the two saccharopine dehydrogenase isozymes of lysine catabolism encoded by the single composite AtLKR/SDH locus of Arabidopsis.
    Zhu X; Tang G; Galili G
    Plant Physiol; 2000 Nov; 124(3):1363-72. PubMed ID: 11080311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical mechanism of saccharopine reductase from Saccharomyces cerevisiae.
    Vashishtha AK; West AH; Cook PF
    Biochemistry; 2009 Jun; 48(25):5899-907. PubMed ID: 19449898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The saccharopine pathway in seed development and stress response of maize.
    Kiyota E; Pena IA; Arruda P
    Plant Cell Environ; 2015 Nov; 38(11):2450-61. PubMed ID: 25929294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis through site-directed mutations and phylogeny of the Candida albicans LYS1-encoded saccharopine dehydrogenase.
    Guo S; Garrad RC; Bhattacharjee JK
    Mol Genet Genomics; 2006 Jan; 275(1):74-80. PubMed ID: 16292576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The enzymology of lysine catabolism in rice seeds--isolation, characterization, and regulatory properties of a lysine 2-oxoglutarate reductase/saccharopine dehydrogenase bifunctional polypeptide.
    Gaziola SA; Teixeira CM; Lugli J; Sodek L; Azevedo RA
    Eur J Biochem; 1997 Jul; 247(1):364-71. PubMed ID: 9249048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into the mechanism of the Schiff base hydrolysis catalyzed by type I dehydroquinate dehydratase from S. enterica: a theoretical study.
    Yao Y; Li ZS
    Org Biomol Chem; 2012 Sep; 10(35):7037-44. PubMed ID: 22847490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The activity of the Arabidopsis bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase enzyme of lysine catabolism is regulated by functional interaction between its two enzyme domains.
    Zhu X; Tang G; Galili G
    J Biol Chem; 2002 Dec; 277(51):49655-61. PubMed ID: 12393892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lysine degradation through the saccharopine pathway in bacteria: LKR and SDH in bacteria and its relationship to the plant and animal enzymes.
    Serrano GC; Rezende e Silva Figueira T; Kiyota E; Zanata N; Arruda P
    FEBS Lett; 2012 Mar; 586(6):905-11. PubMed ID: 22449979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and characterization of bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase from developing soybean seeds.
    Miron D; Ben-Yaacov S; Reches D; Schupper A; Galili G
    Plant Physiol; 2000 Jun; 123(2):655-64. PubMed ID: 10859195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.