BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 23732305)

  • 1. Quantum polarized ligand docking investigation to understand the significance of protonation states in histone deacetylase inhibitors.
    Kalyaanamoorthy S; Chen YP
    J Mol Graph Model; 2013 Jul; 44():44-53. PubMed ID: 23732305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative molecular dynamics simulations of histone deacetylase-like protein: binding modes and free energy analysis to hydroxamic acid inhibitors.
    Yan C; Xiu Z; Li X; Li S; Hao C; Teng H
    Proteins; 2008 Oct; 73(1):134-49. PubMed ID: 18398905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diarylcyclopropane hydroxamic acid inhibitors of histone deacetylase 4 designed by combinatorial approach and QM/MM calculations.
    Kollar J; Frecer V
    J Mol Graph Model; 2018 Oct; 85():97-110. PubMed ID: 30145395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-optimised pharmacophore approach to identify potential hotspots during inhibition of Class II HDAC isoforms.
    Ganai SA; Shanmugam K; Mahadevan V
    J Biomol Struct Dyn; 2015; 33(2):374-87. PubMed ID: 24460542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel urushiol derivatives as HDAC8 inhibitors: rational design, virtual screening, molecular docking and molecular dynamics studies.
    Zhou H; Wang C; Deng T; Tao R; Li W
    J Biomol Struct Dyn; 2018 Jun; 36(8):1966-1978. PubMed ID: 28632421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docking ligands into flexible and solvated macromolecules. 6. Development and application to the docking of HDACs and other zinc metalloenzymes inhibitors.
    Pottel J; Therrien E; Gleason JL; Moitessier N
    J Chem Inf Model; 2014 Jan; 54(1):254-65. PubMed ID: 24364808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A steered molecular dynamics mediated hit discovery for histone deacetylases.
    Kalyaanamoorthy S; Chen YP
    Phys Chem Chem Phys; 2014 Feb; 16(8):3777-91. PubMed ID: 24429775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unexpected deacetylation mechanism suggested by a density functional theory QM/MM study of histone-deacetylase-like protein.
    Corminboeuf C; Hu P; Tuckerman ME; Zhang Y
    J Am Chem Soc; 2006 Apr; 128(14):4530-1. PubMed ID: 16594663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxime amides as a novel zinc binding group in histone deacetylase inhibitors: synthesis, biological activity, and computational evaluation.
    Botta CB; Cabri W; Cini E; De Cesare L; Fattorusso C; Giannini G; Persico M; Petrella A; Rondinelli F; Rodriquez M; Russo A; Taddei M
    J Med Chem; 2011 Apr; 54(7):2165-82. PubMed ID: 21417297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structure-based virtual screening approach toward the discovery of histone deacetylase inhibitors: identification of promising zinc-chelating groups.
    Park H; Kim S; Kim YE; Lim SJ
    ChemMedChem; 2010 Apr; 5(4):591-7. PubMed ID: 20157916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanistic approach to explore novel HDAC1 inhibitor using pharmacophore modeling, 3D- QSAR analysis, molecular docking, density functional and molecular dynamics simulation study.
    Choubey SK; Jeyaraman J
    J Mol Graph Model; 2016 Nov; 70():54-69. PubMed ID: 27668885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward selective histone deacetylase inhibitor design: homology modeling, docking studies, and molecular dynamics simulations of human class I histone deacetylases.
    Wang DF; Helquist P; Wiech NL; Wiest O
    J Med Chem; 2005 Nov; 48(22):6936-47. PubMed ID: 16250652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-function analysis of the conserved tyrosine and diverse π-stacking among class I histone deacetylases: a QM (DFT)/MM MD study.
    Zhou J; Xie H; Liu Z; Luo HB; Wu R
    J Chem Inf Model; 2014 Nov; 54(11):3162-71. PubMed ID: 25360823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the potential binding sites of some known HDAC inhibitors on some HDAC8 conformers by docking studies.
    Sixto-López Y; Gómez-Vidal JA; Correa-Basurto J
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1907-26. PubMed ID: 24888409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc binding in HDAC inhibitors: a DFT study.
    Wang D; Helquist P; Wiest O
    J Org Chem; 2007 Jul; 72(14):5446-9. PubMed ID: 17579460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand release mechanisms and channels in histone deacetylases.
    Kalyaanamoorthy S; Chen YP
    J Comput Chem; 2013 Oct; 34(26):2270-83. PubMed ID: 23893931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cyclodextrin-capped histone deacetylase inhibitor.
    Amin J; Puglisi A; Clarke J; Milton J; Wang M; Paranal RM; Bradner JE; Spencer J
    Bioorg Med Chem Lett; 2013 Jun; 23(11):3346-8. PubMed ID: 23591111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Docking of hydroxamic acids into HDAC1 and HDAC8: a rationalization of activity trends and selectivities.
    Ortore G; Di Colo F; Martinelli A
    J Chem Inf Model; 2009 Dec; 49(12):2774-85. PubMed ID: 19947584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study based on docking and molecular dynamics simulations over HDAC-tubulin dual inhibitors.
    Hassanzadeh M; Bagherzadeh K; Amanlou M
    J Mol Graph Model; 2016 Nov; 70():170-180. PubMed ID: 27750186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiol versus hydroxamate as zinc binding group in HDAC inhibition: An ab initio QM/MM molecular dynamics study.
    Gong W; Wu R; Zhang Y
    J Comput Chem; 2015 Nov; 36(30):2228-35. PubMed ID: 26452222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.