BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23732393)

  • 1. Development and characterization of micellar systems for application as insect repellents.
    Barradas TN; Lopes LM; Ricci-Júnior E; de Holanda E Silva KG; Mansur CR
    Int J Pharm; 2013 Oct; 454(2):633-40. PubMed ID: 23732393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-vitro permeation of the insect repellent N,N-diethyl-m-toluamide (DEET) and the sunscreen oxybenzone.
    Gu X; Kasichayanula S; Fediuk DJ; Burczynski FJ
    J Pharm Pharmacol; 2004 May; 56(5):621-8. PubMed ID: 15142339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel encapsulation of N,N-diethyl-3-methylbenzamide (DEET) favorably modifies skin absorption while maintaining effective evaporation rates.
    Karr JI; Speaker TJ; Kasting GB
    J Control Release; 2012 Jun; 160(3):502-8. PubMed ID: 22546679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Percutaneous permeation of N,N-diethyl-m-toluamide (DEET) from commercial mosquito repellents and the effect of solvent.
    Stinecipher J; Shah J
    J Toxicol Environ Health; 1997 Oct; 52(2):119-35. PubMed ID: 9310145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Percutaneous characterization of the insect repellent DEET and the sunscreen oxybenzone from topical skin application.
    Kasichayanula S; House JD; Wang T; Gu X
    Toxicol Appl Pharmacol; 2007 Sep; 223(2):187-94. PubMed ID: 17602720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microencapsulation decreases the skin absorption of N,N-diethyl-m-toluamide (DEET).
    Kasting GB; Bhatt VD; Speaker TJ
    Toxicol In Vitro; 2008 Mar; 22(2):548-52. PubMed ID: 18093794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduced transdermal absorption of N,N-diethyl-m-toluamide from a new topical insect repellent formulation.
    Qiu H; Jun HW; Dzimianski M; McCall J
    Pharm Dev Technol; 1997 Feb; 2(1):33-42. PubMed ID: 9552429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evaluation of concurrent use of commercially available insect repellent and sunscreen preparations.
    Gu X; Wang T; Collins DM; Kasichayanula S; Burczynski FJ
    Br J Dermatol; 2005 Jun; 152(6):1263-7. PubMed ID: 15948991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro permeation of repellent DEET and sunscreen oxybenzone across three artificial membranes.
    Wang T; Kasichayanula S; Gu X
    Int J Pharm; 2006 Mar; 310(1-2):110-7. PubMed ID: 16414221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of pharmaceuticals on thermoreversible gelation of PEO-PPO-PEO copolymers.
    Sharma PK; Reilly MJ; Bhatia SK; Sakhitab N; Archambault JD; Bhatia SR
    Colloids Surf B Biointerfaces; 2008 Jun; 63(2):229-35. PubMed ID: 18249098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Percutaneous penetration modifiers and formulation effects.
    Kaushik D; Costache A; Michniak-Kohn B
    Int J Pharm; 2010 Feb; 386(1-2):42-51. PubMed ID: 19900521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction in skin permeation of N,N-diethyl-m-toluamide (DEET) by altering the skin/vehicle partition coefficient.
    Ross1 JS; Shah JC
    J Control Release; 2000 Jul; 67(2-3):211-21. PubMed ID: 10825555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of GC-MS and MOSES II, a hybrid modular sensor system, for the quantitative detection of the evaporation of the insect repellent N,N-diethyl-m-toluamide from two different matrices.
    Schepper K; Ulmer H; Göpel W; Daniels R
    Pharmazie; 2000 Feb; 55(2):97-101. PubMed ID: 10723766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the environmental fate and ecotoxicity of N,N-diethyl-m-toluamide (DEET).
    Weeks JA; Guiney PD; Nikiforov AI
    Integr Environ Assess Manag; 2012 Jan; 8(1):120-34. PubMed ID: 22006575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Pluronic F127 microenvironments on the photochemical nitric oxide release from S-nitrosoglutathione.
    Picheth GF; Marini TC; Taladriz-Blanco P; Shimamoto GG; Dos Santos GJVP; Meneau F; de Oliveira MG
    J Colloid Interface Sci; 2019 May; 544():217-229. PubMed ID: 30849619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(ethylene oxide)-poly(styrene oxide)-poly(ethylene oxide) copolymers: micellization, drug solubilization, and gelling features.
    Cambón A; Barbosa S; Rey-Rico A; Figueroa-Ochoa EB; Soltero JF; Yeates SG; Alvarez-Lorenzo C; Concheiro A; Taboada P; Mosquera V
    J Colloid Interface Sci; 2012 Dec; 387(1):275-84. PubMed ID: 22939527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled supramolecular thermoreversible β-cyclodextrin/ethylene glycol injectable hydrogels with difunctional Pluronic
    Khan S; Minhas MU; Ahmad M; Sohail M
    J Biomater Sci Polym Ed; 2018 Jan; 29(1):1-34. PubMed ID: 29059021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wormlike micelle formation and flow alignment of a pluronic block copolymer in aqueous solution.
    Castelletto V; Parras P; Hamley IW; Bäverbäck P; Pedersen JS; Panine P
    Langmuir; 2007 Jun; 23(13):6896-902. PubMed ID: 17523689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microencapsulation of DEET in Solid Lipid Microparticles: production, characterization and safety evaluation.
    Santos PA; Silva MRMD; Tavares M; Ricci-Junior E
    An Acad Bras Cienc; 2022; 94(suppl 3):e20211166. PubMed ID: 36074427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of pharmaceutically acceptable glycols on the stability of the liquid crystalline gels formed by Poloxamer 407 in water.
    Ivanova R; Lindman B; Alexandridis P
    J Colloid Interface Sci; 2002 Aug; 252(1):226-35. PubMed ID: 16290783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.