BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 23732441)

  • 1. Analysis of an alternative to the H-atom abstraction mechanism in methane C-H bond activation by nonheme iron(IV)-oxo oxidants.
    Tang H; Guan J; Liu H; Huang X
    Dalton Trans; 2013 Jul; 42(28):10260-70. PubMed ID: 23732441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of compound II: electronic structure analysis of methane hydroxylation by oxoiron(IV) porphyrin complexes.
    Rosa A; Ricciardi G
    Inorg Chem; 2012 Sep; 51(18):9833-45. PubMed ID: 22946694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the axial ligand on distinct reaction tunneling for methane hydroxylation by nonheme iron(IV)-oxo complexes.
    Tang H; Guan J; Zhang L; Liu H; Huang X
    Phys Chem Chem Phys; 2012 Oct; 14(37):12863-74. PubMed ID: 22890313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is the ruthenium analogue of compound I of cytochrome p450 an efficient oxidant? A theoretical investigation of the methane hydroxylation reaction.
    Sharma PK; De Visser SP; Ogliaro F; Shaik S
    J Am Chem Soc; 2003 Feb; 125(8):2291-300. PubMed ID: 12590559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative insight into electronic properties and reactivities toward C-H bond activation by iron(IV)-nitrido, iron(IV)-oxo, and iron(IV)-sulfido complexes: a theoretical investigation.
    Tang H; Guan J; Liu H; Huang X
    Inorg Chem; 2013 Mar; 52(5):2684-96. PubMed ID: 23425218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large equatorial ligand effects on C-H bond activation by nonheme iron(IV)-oxo complexes.
    Sun X; Geng C; Huo R; Ryde U; Bu Y; Li J
    J Phys Chem B; 2014 Feb; 118(6):1493-500. PubMed ID: 24471414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trends in substrate hydroxylation reactions by heme and nonheme iron(IV)-oxo oxidants give correlations between intrinsic properties of the oxidant with barrier height.
    de Visser SP
    J Am Chem Soc; 2010 Jan; 132(3):1087-97. PubMed ID: 20041691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the FeO(2+) and FeS(2+) complexes in the cyanide and isocyanide ligand environment for methane hydroxylation.
    Tang H; Li Z; Yang YH; Zhao Y; Wan SQ; Liu HL; Huang XR
    J Comput Chem; 2012 Jun; 33(16):1448-57. PubMed ID: 22517297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced reactivities of iron(IV)-oxo porphyrin pi-cation radicals in oxygenation reactions by electron-donating axial ligands.
    Kang Y; Chen H; Jeong YJ; Lai W; Bae EH; Shaik S; Nam W
    Chemistry; 2009 Oct; 15(39):10039-46. PubMed ID: 19697378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axial ligand effect on the rate constant of aromatic hydroxylation by iron(IV)-oxo complexes mimicking cytochrome P450 enzymes.
    Kumar D; Sastry GN; de Visser SP
    J Phys Chem B; 2012 Jan; 116(1):718-30. PubMed ID: 22132821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes.
    Nam W; Lee YM; Fukuzumi S
    Acc Chem Res; 2014 Apr; 47(4):1146-54. PubMed ID: 24524675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties and reactivities of nonheme iron(IV)-oxo versus iron(V)-oxo: long-range electron transfer versus hydrogen atom abstraction.
    Karamzadeh B; Singh D; Nam W; Kumar D; de Visser SP
    Phys Chem Chem Phys; 2014 Nov; 16(41):22611-22. PubMed ID: 25231726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonheme oxo-iron(IV) intermediates form an oxyl radical upon approaching the C-H bond activation transition state.
    Ye S; Neese F
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1228-33. PubMed ID: 21220293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A two-state reactivity rationale for counterintuitive axial ligand effects on the C-H activation reactivity of nonheme FeIV=O oxidants.
    Hirao H; Que L; Nam W; Shaik S
    Chemistry; 2008; 14(6):1740-56. PubMed ID: 18186094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What factors influence the reactivity of C-H hydroxylation and C=C epoxidation by [Fe(IV)(L(ax))(1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane)(O)](n+).
    Yi W; Yuan L; Kun Y; Zhengwen H; Jing T; Xu F; Hong G; Yong W
    J Biol Inorg Chem; 2015 Oct; 20(7):1123-34. PubMed ID: 26345158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axial ligand tuning of a nonheme iron(IV)-oxo unit for hydrogen atom abstraction.
    Sastri CV; Lee J; Oh K; Lee YJ; Lee J; Jackson TA; Ray K; Hirao H; Shin W; Halfen JA; Kim J; Que L; Shaik S; Nam W
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19181-6. PubMed ID: 18048327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR and EPR studies of the bis(pyridine) and bis(tert-butyl isocyanide) complexes of iron(III) octaethylchlorin.
    Cai S; Lichtenberger DL; Walker FA
    Inorg Chem; 2005 Mar; 44(6):1890-903. PubMed ID: 15762715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.
    Jensen MP; Lange SJ; Mehn MP; Que EL; Que L
    J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic activity tuning of a biomimetic HO-FeV=O oxidant for methane hydroxylation by substituents on aromatic rings: theoretical study.
    Ma Y; Balbuena PB
    J Phys Chem B; 2007 Mar; 111(10):2711-8. PubMed ID: 17315920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does hydrogen-bonding donation to manganese(IV)-oxo and iron(IV)-oxo oxidants affect the oxygen-atom transfer ability? A computational study.
    Latifi R; Sainna MA; Rybak-Akimova EV; de Visser SP
    Chemistry; 2013 Mar; 19(12):4058-68. PubMed ID: 23362213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.