These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 23732443)

  • 1. The spatial pattern of leaf phenology and its response to climate change in China.
    Dai J; Wang H; Ge Q
    Int J Biometeorol; 2014 May; 58(4):521-8. PubMed ID: 23732443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China.
    Chen X; Xu L
    Int J Biometeorol; 2012 Jul; 56(4):695-706. PubMed ID: 21805230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple phenological responses to climate change among 42 plant species in Xi'an, China.
    Dai J; Wang H; Ge Q
    Int J Biometeorol; 2013 Sep; 57(5):749-58. PubMed ID: 23114575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating changes in the leaf unfolding time of 20 plant species in China over the twenty-first century.
    Ge Q; Wang H; Dai J
    Int J Biometeorol; 2014 May; 58(4):473-84. PubMed ID: 23689929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal variations in leaf-out phenology of typical European tree species and their responses to climate change.
    Lin SZ; Ge QS; Wang HJ
    Ying Yong Sheng Tai Xue Bao; 2021 Mar; 32(3):788-798. PubMed ID: 33754543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antagonistic effects of growing season and autumn temperatures on the timing of leaf coloration in winter deciduous trees.
    Liu G; Chen X; Zhang Q; Lang W; Delpierre N
    Glob Chang Biol; 2018 Aug; 24(8):3537-3545. PubMed ID: 29460318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason.
    Güsewell S; Furrer R; Gehrig R; Pietragalla B
    Glob Chang Biol; 2017 Dec; 23(12):5189-5202. PubMed ID: 28586135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and temporal changes in leaf coloring date of Acer palmatum and Ginkgo biloba in response to temperature increases in South Korea.
    Park CK; Ho CH; Jeong SJ; Lee EJ; Kim J
    PLoS One; 2017; 12(3):e0174390. PubMed ID: 28346534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal Variation of
    Wang X; Liu Y; Li X; He S; Zhong M; Shang F
    Front Plant Sci; 2021; 12():716071. PubMed ID: 35126403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of the Morus bombycis growing season to temperature and its latitudinal pattern in Japan.
    Doi H
    Int J Biometeorol; 2012 Sep; 56(5):895-902. PubMed ID: 21947335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenological changes in herbaceous plants in China's grasslands and their responses to climate change: a meta-analysis.
    Huang W; Dai J; Wang W; Li J; Feng C; Du J
    Int J Biometeorol; 2020 Nov; 64(11):1865-1876. PubMed ID: 32734424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature sensitivity of leaf flushing in 12 common woody species in eastern China.
    Yu P; Meng P; Tong X; Zhang Y; Li J; Zhang J; Liu P
    Sci Total Environ; 2023 Feb; 861():160337. PubMed ID: 36574556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental warming advances phenology of groundlayer plants at the boreal-temperate forest ecotone.
    Rice KE; Montgomery RA; Stefanski A; Rich RL; Reich PB
    Am J Bot; 2018 May; 105(5):851-861. PubMed ID: 29874393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of chilling and heat requirements for leaf unfolding in deciduous woody species in temperate and subtropical China.
    Xu Y; Dai J; Ge Q; Wang H; Tao Z
    Int J Biometeorol; 2021 Mar; 65(3):393-403. PubMed ID: 32880063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variations in the temperature sensitivity of spring leaf phenology from 1978 to 2014 in Mudanjiang, China.
    Dai J; Xu Y; Wang H; Alatalo J; Tao Z; Ge Q
    Int J Biometeorol; 2019 May; 63(5):569-577. PubMed ID: 29249042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.
    Wheeler HC; Høye TT; Schmidt NM; Svenning JC; Forchhammer MC
    Ecology; 2015 Mar; 96(3):775-87. PubMed ID: 26236873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking altitudinal gradients and temperature responses of plant phenology in the Bavarian Alps.
    Cornelius C; Estrella N; Franz H; Menzel A
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():57-69. PubMed ID: 22686251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New satellite-based estimates show significant trends in spring phenology and complex sensitivities to temperature and precipitation at northern European latitudes.
    Jin H; Jönsson AM; Olsson C; Lindström J; Jönsson P; Eklundh L
    Int J Biometeorol; 2019 Jun; 63(6):763-775. PubMed ID: 30805728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights on plant phenological response to temperature revealed from long-term widespread observations in China.
    Zhang H; Liu S; Regnier P; Yuan W
    Glob Chang Biol; 2018 May; 24(5):2066-2078. PubMed ID: 29197142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.