These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23732536)

  • 21. Hydrogen spillover enhanced hydroxyl formation and catalytic activity toward CO oxidation at the metal/oxide interface.
    Jin Y; Sun G; Xiong F; Ding L; Huang W
    Chemistry; 2015 Mar; 21(11):4252-6. PubMed ID: 25650016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved CO oxidation activity in the presence and absence of hydrogen over cluster-derived PtFe/SiO2 catalysts.
    Siani A; Captain B; Alexeev OS; Stafyla E; Hungria AB; Midgley PA; Thomas JM; Adams RD; Amiridis MD
    Langmuir; 2006 May; 22(11):5160-7. PubMed ID: 16700608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Furfuraldehyde hydrogenation on titanium oxide-supported platinum nanoparticles studied by sum frequency generation vibrational spectroscopy: acid-base catalysis explains the molecular origin of strong metal-support interactions.
    Baker LR; Kennedy G; Van Spronsen M; Hervier A; Cai X; Chen S; Wang LW; Somorjai GA
    J Am Chem Soc; 2012 Aug; 134(34):14208-16. PubMed ID: 22871058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Silica nanoparticles for template synthesis of supported Pt and Pt-Ru electrocatalysts.
    Li A; Zhao JX; Pierce DT
    J Colloid Interface Sci; 2010 Nov; 351(2):365-73. PubMed ID: 20728899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning supported catalyst reactivity with dendrimer-templated Pt-Cu nanoparticles.
    Hoover NN; Auten BJ; Chandler BD
    J Phys Chem B; 2006 May; 110(17):8606-12. PubMed ID: 16640414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Colloidally prepared Pt nanowires versus impregnated Pt nanoparticles: comparison of adsorption and reaction properties.
    Haghofer A; Sonström P; Fenske D; Föttinger K; Schwarz S; Bernardi J; Al-Shamery K; Bäumer M; Rupprechter G
    Langmuir; 2010 Nov; 26(21):16330-8. PubMed ID: 20715880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction.
    Zhang J; Lima FH; Shao MH; Sasaki K; Wang JX; Hanson J; Adzic RR
    J Phys Chem B; 2005 Dec; 109(48):22701-4. PubMed ID: 16853957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of the TiO2 reduction state on the catalytic CO oxidation on deposited size-selected Pt clusters.
    Bonanni S; Aït-Mansour K; Harbich W; Brune H
    J Am Chem Soc; 2012 Feb; 134(7):3445-50. PubMed ID: 22233210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly monodisperse Cu- and Ag-based bimetallic nanocrystals for the efficient utilization of noble metals in catalysis.
    Shen S; Zhuang J; Yang Y; Wang X
    Nanoscale; 2011 Jan; 3(1):272-9. PubMed ID: 21031199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition.
    Ge H; Zhang B; Gu X; Liang H; Yang H; Gao Z; Wang J; Qin Y
    Angew Chem Int Ed Engl; 2016 Jun; 55(25):7081-5. PubMed ID: 27122357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CeO2/rGO/Pt sandwich nanostructure: rGO-enhanced electron transmission between metal oxide and metal nanoparticles for anodic methanol oxidation of direct methanol fuel cells.
    Yu X; Kuai L; Geng B
    Nanoscale; 2012 Sep; 4(18):5738-43. PubMed ID: 22893017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytically Active Rh Sub-Nanoclusters on TiO2 for CO Oxidation at Cryogenic Temperatures.
    Guan H; Lin J; Qiao B; Yang X; Li L; Miao S; Liu J; Wang A; Wang X; Zhang T
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2820-4. PubMed ID: 26797803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interface-Confined FeO
    Xu X; Fu Q; Gan L; Zhu J; Bao X
    J Phys Chem B; 2018 Jan; 122(2):984-990. PubMed ID: 28914538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simple but Efficient Method for Inhibiting Sintering and Aggregation of Catalytic Pt Nanoclusters on Metal-Oxide Supports.
    Koizumi K; Nobusada K; Boero M
    Chemistry; 2017 Jan; 23(7):1531-1538. PubMed ID: 27743425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of the support in CO(ads) monolayer electrooxidation on Pt nanoparticles: Pt/WO(x)vs. Pt/C.
    Micoud F; Maillard F; Bonnefont A; Job N; Chatenet M
    Phys Chem Chem Phys; 2010 Feb; 12(5):1182-93. PubMed ID: 20094684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemoselective hydrogenation catalysts: Pt on mesostructured CeO2 nanoparticles embedded within ultrathin layers of SiO2 binder.
    Concepción P; Corma A; Silvestre-Albero J; Franco V; Chane-Ching JY
    J Am Chem Soc; 2004 May; 126(17):5523-32. PubMed ID: 15113224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction.
    Sasaki K; Zhang L; Adzic RR
    Phys Chem Chem Phys; 2008 Jan; 10(1):159-67. PubMed ID: 18075695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanosized Pt-Co catalysts for the preferential CO oxidation.
    Ko EY; Park ED; Seo KW; Lee HC; Lee D; Kim S
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3567-71. PubMed ID: 17252813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CO oxidation on nanostructured SnO(x)/Pt(111) surfaces: unique properties of reduced SnO(x).
    Axnanda S; Zhou WP; White MG
    Phys Chem Chem Phys; 2012 Aug; 14(29):10207-14. PubMed ID: 22733161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.