These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 23732808)
1. Study on interaction of bile salts with curcumin and curcumin embedded in dipalmitoyl-sn-glycero-3-phosphocholine liposome. Patra D; Ahmadieh D; Aridi R Colloids Surf B Biointerfaces; 2013 Oct; 110():296-304. PubMed ID: 23732808 [TBL] [Abstract][Full Text] [Related]
2. 1-Naphthol as a sensitive fluorescent molecular probe for monitoring the interaction of submicellar concentration of bile salt with a bilayer membrane of DPPC, a lung surfactant. Mohapatra M; Mishra AK J Phys Chem B; 2010 Nov; 114(46):14934-40. PubMed ID: 21038898 [TBL] [Abstract][Full Text] [Related]
3. Effect of curcumin on liposome: curcumin as a molecular probe for monitoring interaction of ionic liquids with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine liposome. Patra D; El Khoury E; Ahmadieh D; Darwish S; Tafech RM Photochem Photobiol; 2012; 88(2):317-27. PubMed ID: 22191485 [TBL] [Abstract][Full Text] [Related]
4. Solubilization of negatively charged DPPC/DPPG liposomes by bile salts. Hildebrand A; Beyer K; Neubert R; Garidel P; Blume A J Colloid Interface Sci; 2004 Nov; 279(2):559-71. PubMed ID: 15464825 [TBL] [Abstract][Full Text] [Related]
5. Photophysical behavior of 8-anilino-1-naphthalenesulfonate in vesicles of pulmonary surfactant dipalmitoylphosphatidylcholine (DPPC) and its sensitivity toward the bile salt-vesicle interaction. Mohapatra M; Mishra AK Langmuir; 2013 Sep; 29(36):11396-404. PubMed ID: 23930911 [TBL] [Abstract][Full Text] [Related]
6. Ionic liquid expedites partition of curcumin into solid gel phase but discourages partition into liquid crystalline phase of 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposomes. El Khoury ED; Patra D J Phys Chem B; 2013 Aug; 117(33):9699-708. PubMed ID: 23895644 [TBL] [Abstract][Full Text] [Related]
7. Curcumin disorders 1,2-dipalmitoyl-sn-glycero-3-phosphocholine membranes and favors the formation of nonlamellar structures by 1,2-dielaidoyl-sn-glycero-3-phosphoethanolamine. Pérez-Lara A; Ausili A; Aranda FJ; de Godos A; Torrecillas A; Corbalán-García S; Gómez-Fernández JC J Phys Chem B; 2010 Aug; 114(30):9778-86. PubMed ID: 20666521 [TBL] [Abstract][Full Text] [Related]
8. Photophysical and photodynamical study of ellipticine: an anticancer drug molecule in bile salt modulated in vitro created liposome. Thakur R; Das A; Chakraborty A Phys Chem Chem Phys; 2012 Nov; 14(44):15369-78. PubMed ID: 23059904 [TBL] [Abstract][Full Text] [Related]
9. Effect of submicellar concentrations of conjugated and unconjugated bile salts on the lipid bilayer membrane. Mohapatra M; Mishra AK Langmuir; 2011 Nov; 27(22):13461-7. PubMed ID: 21973323 [TBL] [Abstract][Full Text] [Related]
10. Interaction of curcumin with 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine liposomes: Intercalation of rhamnolipids enhances membrane fluidity, permeability and stability of drug molecule. Moussa Z; Chebl M; Patra D Colloids Surf B Biointerfaces; 2017 Jan; 149():30-37. PubMed ID: 27716529 [TBL] [Abstract][Full Text] [Related]
11. Bile salt-phospholipid aggregation at submicellar concentrations. Baskin R; Frost LD Colloids Surf B Biointerfaces; 2008 Apr; 62(2):238-42. PubMed ID: 18035524 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence (fluidity/hydration) and calorimetric studies of interactions of bile acid-drug conjugates with model membranes. Sreekanth V; Bajaj A J Phys Chem B; 2013 Feb; 117(7):2123-33. PubMed ID: 23383746 [TBL] [Abstract][Full Text] [Related]
13. An investigation into the effect of the structure of bile salt aggregates on the binding interactions and ESIHT dynamics of curcumin: a photophysical approach to probe bile salt aggregates as a potential drug carrier. Mandal S; Ghosh S; Banik D; Banerjee C; Kuchlyan J; Sarkar N J Phys Chem B; 2013 Nov; 117(44):13795-807. PubMed ID: 24102639 [TBL] [Abstract][Full Text] [Related]
14. IR spectroscopy analysis of pancreatic lipase-related protein 2 interaction with phospholipids: 2. Discriminative recognition of various micellar systems and characterization of PLRP2-DPPC-bile salt complexes. Mateos-Diaz E; Sutto-Ortiz P; Sahaka M; Byrne D; Gaussier H; Carrière F Chem Phys Lipids; 2018 Mar; 211():66-76. PubMed ID: 29155085 [TBL] [Abstract][Full Text] [Related]
15. Kinetic and equilibrium studies of bile salt-liposome interactions. Yang L; Feng F; Fawcett JP; Tucker IG J Liposome Res; 2015 Mar; 25(1):58-66. PubMed ID: 24960448 [TBL] [Abstract][Full Text] [Related]
16. Effects of bile salts on propranolol distribution into liposomes studied by capillary electrophoresis. Yang L; Tucker IG; Østergaard J J Pharm Biomed Anal; 2011 Nov; 56(3):553-9. PubMed ID: 21784594 [TBL] [Abstract][Full Text] [Related]
17. Length of hydrocarbon chain influences location of curcumin in liposomes: Curcumin as a molecular probe to study ethanol induced interdigitation of liposomes. El Khoury E; Patra D J Photochem Photobiol B; 2016 May; 158():49-54. PubMed ID: 26945646 [TBL] [Abstract][Full Text] [Related]
18. Effects of submicellar bile salt concentrations on biological membrane permeability to low molecular weight non-ionic solutes. Albalak A; Zeidel ML; Zucker SD; Jackson AA; Donovan JM Biochemistry; 1996 Jun; 35(24):7936-45. PubMed ID: 8672496 [TBL] [Abstract][Full Text] [Related]
19. Towards an understanding of the release behavior of temperature-sensitive liposomes: a possible explanation of the "pseudoequilibrium" release behavior at the phase transition temperature. Zhang X; Luckham PF; Hughes AD; Thom S; Xu XY J Liposome Res; 2013 Sep; 23(3):167-73. PubMed ID: 23510297 [TBL] [Abstract][Full Text] [Related]
20. Modulation of membrane properties by silver nanoparticles probed by curcumin embedded in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine liposomes. Wehbe N; Patra D; Abdel-Massih RM; Baydoun E Colloids Surf B Biointerfaces; 2019 Jan; 173():94-100. PubMed ID: 30273873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]