These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
434 related articles for article (PubMed ID: 23732839)
21. Activation of the mTOR signaling pathway in the antidepressant-like activity of the mGlu5 antagonist MTEP and the mGlu7 agonist AMN082 in the FST in rats. Pałucha-Poniewiera A; Szewczyk B; Pilc A Neuropharmacology; 2014 Jul; 82():59-68. PubMed ID: 24631968 [TBL] [Abstract][Full Text] [Related]
22. Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC-derived dopaminergic neurons via AMPAR-driven BDNF and mTOR signaling. Cavalleri L; Merlo Pich E; Millan MJ; Chiamulera C; Kunath T; Spano PF; Collo G Mol Psychiatry; 2018 Apr; 23(4):812-823. PubMed ID: 29158584 [TBL] [Abstract][Full Text] [Related]
23. VGF function in depression and antidepressant efficacy. Jiang C; Lin WJ; Sadahiro M; Labonté B; Menard C; Pfau ML; Tamminga CA; Turecki G; Nestler EJ; Russo SJ; Salton SR Mol Psychiatry; 2018 Jul; 23(7):1632-1642. PubMed ID: 29158577 [TBL] [Abstract][Full Text] [Related]
24. Molecular and cellular mechanisms underlying the antidepressant effects of ketamine enantiomers and its metabolites. Yang C; Yang J; Luo A; Hashimoto K Transl Psychiatry; 2019 Nov; 9(1):280. PubMed ID: 31699965 [TBL] [Abstract][Full Text] [Related]
25. Comparison of ketamine, 7,8-dihydroxyflavone, and ANA-12 antidepressant effects in the social defeat stress model of depression. Zhang JC; Yao W; Dong C; Yang C; Ren Q; Ma M; Han M; Hashimoto K Psychopharmacology (Berl); 2015 Dec; 232(23):4325-35. PubMed ID: 26337614 [TBL] [Abstract][Full Text] [Related]
26. Activation of mTOR dependent signaling pathway is a necessary mechanism of antidepressant-like activity of zinc. Szewczyk B; Pochwat B; Rafało A; Palucha-Poniewiera A; Domin H; Nowak G Neuropharmacology; 2015 Dec; 99():517-26. PubMed ID: 26297535 [TBL] [Abstract][Full Text] [Related]
27. Impact of subanesthetic doses of ketamine on AMPA-mediated responses in rats: An in vivo electrophysiological study on monoaminergic and glutamatergic neurons. El Iskandrani KS; Oosterhof CA; El Mansari M; Blier P J Psychopharmacol; 2015 Jul; 29(7):792-801. PubMed ID: 25759403 [TBL] [Abstract][Full Text] [Related]
30. Ifenprodil rapidly ameliorates depressive-like behaviors, activates mTOR signaling and modulates proinflammatory cytokines in the hippocampus of CUMS rats. Yao Y; Ju P; Liu H; Wu X; Niu Z; Zhu Y; Zhang C; Fang Y Psychopharmacology (Berl); 2020 May; 237(5):1421-1433. PubMed ID: 32130432 [TBL] [Abstract][Full Text] [Related]
31. Involvement of AMPA receptors in the antidepressant-like effects of dextromethorphan in mice. Nguyen L; Matsumoto RR Behav Brain Res; 2015 Dec; 295():26-34. PubMed ID: 25804358 [TBL] [Abstract][Full Text] [Related]
32. Antidepressant-like activity of magnesium in the olfactory bulbectomy model is associated with the AMPA/BDNF pathway. Pochwat B; Sowa-Kucma M; Kotarska K; Misztak P; Nowak G; Szewczyk B Psychopharmacology (Berl); 2015 Jan; 232(2):355-67. PubMed ID: 25027582 [TBL] [Abstract][Full Text] [Related]
33. Rapid and Sustained Antidepressant Action of the mGlu2/3 Receptor Antagonist MGS0039 in the Social Defeat Stress Model: Comparison with Ketamine. Dong C; Zhang JC; Yao W; Ren Q; Ma M; Yang C; Chaki S; Hashimoto K Int J Neuropsychopharmacol; 2017 Mar; 20(3):228-236. PubMed ID: 27765808 [TBL] [Abstract][Full Text] [Related]
34. Further Evaluation of Mechanisms Associated with the Antidepressantlike Signature of Scopolamine in Mice. Martin AE; Schober DA; Nikolayev A; Tolstikov VV; Anderson WH; Higgs RE; Kuo MS; Laksmanan A; Catlow JT; Li X; Felder CC; Witkin JM CNS Neurol Disord Drug Targets; 2017; 16(4):492-500. PubMed ID: 28294051 [TBL] [Abstract][Full Text] [Related]
35. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Garcia LS; Comim CM; Valvassori SS; Réus GZ; Barbosa LM; Andreazza AC; Stertz L; Fries GR; Gavioli EC; Kapczinski F; Quevedo J Prog Neuropsychopharmacol Biol Psychiatry; 2008 Jan; 32(1):140-4. PubMed ID: 17884272 [TBL] [Abstract][Full Text] [Related]
36. Hippocampal mammalian target of rapamycin is implicated in stress-coping behavior induced by cannabidiol in the forced swim test. Sartim AG; Sales AJ; Guimarães FS; Joca SR J Psychopharmacol; 2018 Aug; 32(8):922-931. PubMed ID: 29968502 [TBL] [Abstract][Full Text] [Related]
37. An extension of hypotheses regarding rapid-acting, treatment-refractory, and conventional antidepressant activity of dextromethorphan and dextrorphan. Lauterbach EC Med Hypotheses; 2012 Jun; 78(6):693-702. PubMed ID: 22401777 [TBL] [Abstract][Full Text] [Related]
38. Involvement of normalized NMDA receptor and mTOR-related signaling in rapid antidepressant effects of Yueju and ketamine on chronically stressed mice. Tang J; Xue W; Xia B; Ren L; Tao W; Chen C; Zhang H; Wu R; Wang Q; Wu H; Duan J; Chen G Sci Rep; 2015 Aug; 5():13573. PubMed ID: 26315757 [TBL] [Abstract][Full Text] [Related]
39. Fast-acting antidepressant-like effects of ketamine in aged male rats. Hernández-Hernández E; Ledesma-Corvi S; Jornet-Plaza J; García-Fuster MJ Pharmacol Rep; 2024 Oct; 76(5):991-1000. PubMed ID: 39158787 [TBL] [Abstract][Full Text] [Related]
40. Molecular mechanisms for the antidepressant-like effects of a low-dose ketamine treatment in a DFP-based rat model for Gulf War Illness. Ribeiro ACR; Zhu J; Kronfol MM; Jahr FM; Younis RM; Hawkins E; McClay JL; Deshpande LS Neurotoxicology; 2020 Sep; 80():52-59. PubMed ID: 32592718 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]