These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 23732910)
1. Direct protein interactions are responsible for Ikaros-GATA and Ikaros-Cdk9 cooperativeness in hematopoietic cells. Bottardi S; Mavoungou L; Bourgoin V; Mashtalir N; Affar el B; Milot E Mol Cell Biol; 2013 Aug; 33(16):3064-76. PubMed ID: 23732910 [TBL] [Abstract][Full Text] [Related]
2. Ikaros interacts with P-TEFb and cooperates with GATA-1 to enhance transcription elongation. Bottardi S; Zmiri FA; Bourgoin V; Ross J; Mavoungou L; Milot E Nucleic Acids Res; 2011 May; 39(9):3505-19. PubMed ID: 21245044 [TBL] [Abstract][Full Text] [Related]
3. The IKAROS interaction with a complex including chromatin remodeling and transcription elongation activities is required for hematopoiesis. Bottardi S; Mavoungou L; Pak H; Daou S; Bourgoin V; Lakehal YA; Affar el B; Milot E PLoS Genet; 2014 Dec; 10(12):e1004827. PubMed ID: 25474253 [TBL] [Abstract][Full Text] [Related]
4. Cross-talk of GATA-1 and P-TEFb in megakaryocyte differentiation. Elagib KE; Mihaylov IS; Delehanty LL; Bullock GC; Ouma KD; Caronia JF; Gonias SL; Goldfarb AN Blood; 2008 Dec; 112(13):4884-94. PubMed ID: 18780834 [TBL] [Abstract][Full Text] [Related]
5. Cyclin-dependent kinase 7 (CDK7)-mediated phosphorylation of the CDK9 activation loop promotes P-TEFb assembly with Tat and proviral HIV reactivation. Mbonye U; Wang B; Gokulrangan G; Shi W; Yang S; Karn J J Biol Chem; 2018 Jun; 293(26):10009-10025. PubMed ID: 29743242 [TBL] [Abstract][Full Text] [Related]
6. GATA-1 utilizes Ikaros and polycomb repressive complex 2 to suppress Hes1 and to promote erythropoiesis. Ross J; Mavoungou L; Bresnick EH; Milot E Mol Cell Biol; 2012 Sep; 32(18):3624-38. PubMed ID: 22778136 [TBL] [Abstract][Full Text] [Related]
8. Loss of c-Kit and bone marrow failure upon conditional removal of the GATA-2 C-terminal zinc finger domain in adult mice. Li HS; Jin J; Liang X; Matatall KA; Ma Y; Zhang H; Ullrich SE; King KY; Sun SC; Watowich SS Eur J Haematol; 2016 Sep; 97(3):261-70. PubMed ID: 26660446 [TBL] [Abstract][Full Text] [Related]
9. Acetylation of GATA-1 is required for chromatin occupancy. Lamonica JM; Vakoc CR; Blobel GA Blood; 2006 Dec; 108(12):3736-8. PubMed ID: 16888089 [TBL] [Abstract][Full Text] [Related]
10. Ikaros is expressed in developing striatal neurons and involved in enkephalinergic differentiation. Agoston DV; Szemes M; Dobi A; Palkovits M; Georgopoulos K; Gyorgy A; Ring MA J Neurochem; 2007 Sep; 102(6):1805-1816. PubMed ID: 17504264 [TBL] [Abstract][Full Text] [Related]
11. Context-dependent GATA factor function: combinatorial requirements for transcriptional control in hematopoietic and endothelial cells. Wozniak RJ; Boyer ME; Grass JA; Lee Y; Bresnick EH J Biol Chem; 2007 May; 282(19):14665-74. PubMed ID: 17347142 [TBL] [Abstract][Full Text] [Related]
12. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb). Qi T; Tang W; Wang L; Zhai L; Guo L; Zeng X J Biol Chem; 2011 Apr; 286(17):15171-81. PubMed ID: 21378166 [TBL] [Abstract][Full Text] [Related]
13. T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes. Dow EC; Liu H; Rice AP J Cell Physiol; 2010 Jul; 224(1):84-93. PubMed ID: 20201073 [TBL] [Abstract][Full Text] [Related]
14. Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Sun L; Heerema N; Crotty L; Wu X; Navara C; Vassilev A; Sensel M; Reaman GH; Uckun FM Proc Natl Acad Sci U S A; 1999 Jan; 96(2):680-5. PubMed ID: 9892693 [TBL] [Abstract][Full Text] [Related]
15. Separate domains of fission yeast Cdk9 (P-TEFb) are required for capping enzyme recruitment and primed (Ser7-phosphorylated) Rpb1 carboxyl-terminal domain substrate recognition. St Amour CV; Sansó M; Bösken CA; Lee KM; Larochelle S; Zhang C; Shokat KM; Geyer M; Fisher RP Mol Cell Biol; 2012 Jul; 32(13):2372-83. PubMed ID: 22508988 [TBL] [Abstract][Full Text] [Related]
16. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE. Paparidis NF; Durvale MC; Canduri F Mol Biosyst; 2017 Jan; 13(2):246-276. PubMed ID: 27833949 [TBL] [Abstract][Full Text] [Related]