BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23732922)

  • 1. Fermentation of alfalfa wet-fractionation liquids to volatile fatty acids by Streptococcus bovis and Megasphaera elsdenii.
    Weimer PJ; Digman MF
    Bioresour Technol; 2013 Aug; 142():88-94. PubMed ID: 23732922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inoculant effects on alfalfa silage: in vitro gas and volatile fatty acid production.
    Muck RE; Filya I; Contreras-Govea FE
    J Dairy Sci; 2007 Nov; 90(11):5115-25. PubMed ID: 17954752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential influence of dairy propionibacteria on the growth and acid metabolism of Streptococcus bovis and Megasphaera elsdenii.
    Luo J; Ranadheera CS; King S; Evans CA; Baines SK
    Benef Microbes; 2017 Feb; 8(1):111-119. PubMed ID: 27824275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of dietary changes and yeast culture (Saccharomyces cerevisiae) on rumen microbial fermentation of Holstein heifers.
    Moya D; Calsamiglia S; Ferret A; Blanch M; Fandiño JI; Castillejos L; Yoon I
    J Anim Sci; 2009 Sep; 87(9):2874-81. PubMed ID: 19542509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protozoa involved in butyric rather than lactic fermentative pattern during latent acidosis in sheep.
    Brossard L; Martin C; Chaucheyras-Durand F; Michalet-Doreau B
    Reprod Nutr Dev; 2004; 44(3):195-206. PubMed ID: 15460159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81.
    Weimer PJ; Moen GN
    Appl Microbiol Biotechnol; 2013 May; 97(9):4075-81. PubMed ID: 23271673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hops (Humulus lupulus L.) extract on volatile fatty acid production by rumen bacteria.
    Flythe MD; Aiken GE
    J Appl Microbiol; 2010 Oct; 109(4):1169-76. PubMed ID: 20456526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rumen pH and fermentation characteristics in dairy cows supplemented with Megasphaera elsdenii NCIMB 41125 in early lactation.
    Aikman PC; Henning PH; Humphries DJ; Horn CH
    J Dairy Sci; 2011 Jun; 94(6):2840-9. PubMed ID: 21605754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preventing in vitro lactate accumulation in ruminal fermentations by inoculation with Megasphaera elsdenii.
    Kung L; Hession AO
    J Anim Sci; 1995 Jan; 73(1):250-6. PubMed ID: 7601741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the acid-tolerant engineered bacterial strain Megasphaera elsdenii H6F32 on ruminal pH and the lactic acid concentration of simulated rumen acidosis in vitro.
    Long M; Feng WJ; Li P; Zhang Y; He RX; Yu LH; He JB; Jing WY; Li YM; Wang Z; Liu GW
    Res Vet Sci; 2014 Feb; 96(1):28-9. PubMed ID: 24360648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining the production of L-lactic acid with the production of feed protein concentrates from alfalfa.
    Santamaría-Fernández M; Schneider R; Lübeck M; Venus J
    J Biotechnol; 2020 Nov; 323():180-188. PubMed ID: 32828831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraruminal administration of Megasphaera elsdenii modulated rumen fermentation profile in mid-lactation dairy cows.
    Zebeli Q; Terrill SJ; Mazzolari A; Dunn SM; Yang WZ; Ametaj BN
    J Dairy Res; 2012 Feb; 79(1):16-25. PubMed ID: 22008515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermentation, degradation and microbial nitrogen partitioning for three forage colour phenotypes within anthocyanidin-accumulating Lc-alfalfa progeny.
    Jonker A; Gruber MY; Wang Y; Narvaez N; Coulman B; McKinnon JJ; Christensen DA; Azarfar A; Yu P
    J Sci Food Agric; 2012 Aug; 92(11):2265-73. PubMed ID: 22337233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valerate production by Megasphaera elsdenii isolated from pig feces.
    Yoshikawa S; Araoka R; Kajihara Y; Ito T; Miyamoto H; Kodama H
    J Biosci Bioeng; 2018 May; 125(5):519-524. PubMed ID: 29331526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation.
    Andersen SJ; Candry P; Basadre T; Khor WC; Roume H; Hernandez-Sanabria E; Coma M; Rabaey K
    Biotechnol Biofuels; 2015; 8():221. PubMed ID: 26697110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii NCIMB 702410.
    Choi K; Jeon BS; Kim BC; Oh MK; Um Y; Sang BI
    Appl Biochem Biotechnol; 2013 Nov; 171(5):1094-107. PubMed ID: 23754557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of a strain of Saccharomyces cerevisiae (Levucell SC1), a microbial additive for ruminants, on lactate metabolism in vitro.
    Chaucheyras F; Fonty G; Bertin G; Salmon JM; Gouet P
    Can J Microbiol; 1996 Sep; 42(9):927-33. PubMed ID: 8864215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inoculant effects on alfalfa silage: fermentation products and nutritive value.
    Filya I; Muck RE; Contreras-Govea FE
    J Dairy Sci; 2007 Nov; 90(11):5108-14. PubMed ID: 17954751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Batch fermentations on synthetic mixed sugar and starch medium with amylolytic lactic acid bacteria.
    Thomsen MH; Guyot JP; Kiel P
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):540-6. PubMed ID: 17109171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a combination of hinokitiol (β-thujaplicin) and an organic acid mixture on ruminal fermentation in heifers fed a high-grain diet.
    Ishii J; Omura H; Mitsui T; Eguchi N; Ueno T; Goto H; Ito H
    Anim Sci J; 2012 Jan; 83(1):36-42. PubMed ID: 22250737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.