BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 23732922)

  • 21. Production of L-lactic acid from fresh cassava roots slurried with tofu liquid waste by Streptococcus bovis.
    Ghofar A; Ogawa S; Kokugan T
    J Biosci Bioeng; 2005 Dec; 100(6):606-12. PubMed ID: 16473768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of primary sludge fermentation products on mass balance for biological treatment.
    Ubay-Cokgor E; Oktay S; Zengin GE; Artan N; Orhon D
    Water Sci Technol; 2005; 51(11):105-14. PubMed ID: 16114623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of a mixture of lactic acid bacteria applied as a freeze-dried or fresh culture on the fermentation of alfalfa silage.
    Kizilsimsek M; Schmidt RJ; Kung L
    J Dairy Sci; 2007 Dec; 90(12):5698-705. PubMed ID: 18024762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome sequence of the ruminal bacterium Megasphaera elsdenii.
    Marx H; Graf AB; Tatto NE; Thallinger GG; Mattanovich D; Sauer M
    J Bacteriol; 2011 Oct; 193(19):5578-9. PubMed ID: 21914887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling of growth, lactate consumption, and volatile fatty acid production by Megasphaera elsdenii cultivated in minimal and complex media.
    Soto-Cruz O; Favela-Torres E; Saucedo-CastaƱeda G
    Biotechnol Prog; 2002; 18(2):193-200. PubMed ID: 11934285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants.
    Morgan-Sagastume F; Pratt S; Karlsson A; Cirne D; Lant P; Werker A
    Bioresour Technol; 2011 Feb; 102(3):3089-97. PubMed ID: 21075621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leguminose green juice as an efficient nutrient for l(+)-lactic acid production.
    Dietz D; Schneider R; Papendiek F; Venus J
    J Biotechnol; 2016 Oct; 236():26-34. PubMed ID: 27422353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of carbon and nitrogen sources on bovicin HC5 production by Streptococcus bovis HC5.
    De Carvalho AA; Mantovani HC; Paiva AD; De Melo MR
    J Appl Microbiol; 2009 Jul; 107(1):339-47. PubMed ID: 19320950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in ruminal bacterial community composition following feeding of alfalfa ensiled with a lactic acid bacterial inoculant.
    Mohammed R; Stevenson DM; Beauchemin KA; Muck RE; Weimer PJ
    J Dairy Sci; 2012 Jan; 95(1):328-39. PubMed ID: 22192212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biohydrogen production by mixed culture of Megasphaera elsdenii with lactic acid bacteria as Lactate-driven dark fermentation.
    Ohnishi A; Hasegawa Y; Fujimoto N; Suzuki M
    Bioresour Technol; 2022 Jan; 343():126076. PubMed ID: 34601026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The development of lactic acid bacteria and Lactobacillus buchneri and their effects on the fermentation of alfalfa silage.
    Schmidt RJ; Hu W; Mills JA; Kung L
    J Dairy Sci; 2009 Oct; 92(10):5005-10. PubMed ID: 19762819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro effects of a thiopeptide and monensin on ruminal fermentation of soluble carbohydrates.
    Tung RS; Kung L
    J Dairy Sci; 1993 Apr; 76(4):1083-90. PubMed ID: 8486839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemical changes in bovine colostrum preserved with formalin or by fermentation.
    Bush RS; McQueen RE; Nicholson JW
    J Dairy Sci; 1980 Mar; 63(3):464-70. PubMed ID: 6768780
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Branched chain amino acids as source of specific branched chain volatile fatty acids during the fermentation process of fish sauce.
    Sanceda NG; Suzuki E; Kurata T
    Amino Acids; 2003; 24(1-2):81-7. PubMed ID: 12624738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of a Saccharomyces cerevisiae culture on in vitro mixed ruminal microorganism fermentation.
    Sullivan HM; Martin SA
    J Dairy Sci; 1999 Sep; 82(9):2011-6. PubMed ID: 10509261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria.
    Panagou EZ; Schillinger U; Franz CM; Nychas GJ
    Food Microbiol; 2008 Apr; 25(2):348-58. PubMed ID: 18206777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes.
    Chen H; Meng H; Nie Z; Zhang M
    Bioresour Technol; 2013 Jan; 128():533-8. PubMed ID: 23201909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of feeding glycerol on free-fatty acid production and fermentation kinetics of mixed ruminal microbes in vitro.
    Krueger NA; Anderson RC; Tedeschi LO; Callaway TR; Edrington TS; Nisbet DJ
    Bioresour Technol; 2010 Nov; 101(21):8469-72. PubMed ID: 20580225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of molasses and monensin in alfalfa hay- or corn silage-based diets on rumen fermentation, total tract digestibility, and milk production by Holstein cows.
    Oelker ER; Reveneau C; Firkins JL
    J Dairy Sci; 2009 Jan; 92(1):270-85. PubMed ID: 19109286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of volatile fatty acids on a thermophilic anaerobic hydrogen fermentation process degrading peptone.
    Cheng SS; Chang SM; Chen ST
    Water Sci Technol; 2002; 46(4-5):209-14. PubMed ID: 12361012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.