These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23733022)

  • 1. Optimizing the performance of dual-axis confocal microscopes via Monte-Carlo scattering simulations and diffraction theory.
    Chen Y; Liu JT
    J Biomed Opt; 2013 Jun; 18(6):066006. PubMed ID: 23733022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of line-scanned and point-scanned dual-axis confocal microscope performance.
    Wang D; Chen Y; Wang Y; Liu JT
    Opt Lett; 2013 Dec; 38(24):5280-3. PubMed ID: 24322237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the tissue-imaging performance of confocal microscope architectures via Monte Carlo simulations.
    Chen Y; Wang D; Liu JT
    Opt Lett; 2012 Nov; 37(21):4495-7. PubMed ID: 23114341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved rejection of multiply scattered photons in confocal microscopy using dual-axes architecture.
    Wong LK; Mandella MJ; Kino GS; Wang TD
    Opt Lett; 2007 Jun; 32(12):1674-6. PubMed ID: 17572743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bessel-beam illumination in dual-axis confocal microscopy mitigates resolution degradation caused by refractive heterogeneities.
    Chen Y; Glaser A; Liu JT
    J Biophotonics; 2017 Jan; 10(1):68-74. PubMed ID: 27667127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulated-Alignment Dual-Axis (MAD) Confocal Microscopy Optimized for Speed and Contrast.
    Leigh SY; Ye Chen ; Liu JTC
    IEEE Trans Biomed Eng; 2016 Oct; 63(10):2119-2124. PubMed ID: 28055837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sheet-scanned dual-axis confocal microscopy using Richardson-Lucy deconvolution.
    Wang D; Meza D; Wang Y; Gao L; Liu JT
    Opt Lett; 2014 Sep; 39(18):5431-4. PubMed ID: 26466290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the imaging performance of light sheet microscopies in highly scattering tissues.
    Glaser AK; Wang Y; Liu JT
    Biomed Opt Express; 2016 Feb; 7(2):454-66. PubMed ID: 26977355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient rejection of scattered light enables deep optical sectioning in turbid media with low-numerical-aperture optics in a dual-axis confocal architecture.
    Liu JT; Mandella MJ; Crawford JM; Contag CH; Wang TD; Kino GS
    J Biomed Opt; 2008; 13(3):034020. PubMed ID: 18601565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artifacts resulting from imaging in scattering media: a theoretical prediction.
    Rohrbach A
    Opt Lett; 2009 Oct; 34(19):3041-3. PubMed ID: 19794809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confocal microscopy in turbid media.
    Schmitt JM; Knüttel A; Yadlowsky M
    J Opt Soc Am A Opt Image Sci Vis; 1994 Aug; 11(8):2226-35. PubMed ID: 7931759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximizing fluorescence collection efficiency in multiphoton microscopy.
    Zinter JP; Levene MJ
    Opt Express; 2011 Aug; 19(16):15348-62. PubMed ID: 21934897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Monte Carlo simulation of confocal microscopy in biological tissue.
    Schmitt JM; Ben-Letaief K
    J Opt Soc Am A Opt Image Sci Vis; 1996 May; 13(5):952-61. PubMed ID: 8622177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monte Carlo simulation of 3D mapping of cardiac electrical activity with spinning slit confocal optics.
    Hwang SM; Choi BR; Salama G
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1093-7. PubMed ID: 17946022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust determination of the anisotropic polarizability of nanoparticles using coherent confocal microscopy.
    Davis BJ; Carney PS
    J Opt Soc Am A Opt Image Sci Vis; 2008 Aug; 25(8):2102-13. PubMed ID: 18677373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the tight focusing of beams in absorbing media with Monte Carlo simulations.
    Brandes AR; Elmaklizi A; Akarçay HG; Kienle A
    J Biomed Opt; 2014; 19(11):115003. PubMed ID: 25393966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology.
    Yin C; Glaser AK; Leigh SY; Chen Y; Wei L; Pillai PC; Rosenberg MC; Abeytunge S; Peterson G; Glazowski C; Sanai N; Mandella MJ; Rajadhyaksha M; Liu JT
    Biomed Opt Express; 2016 Feb; 7(2):251-63. PubMed ID: 26977337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulated-alignment dual-axis (MAD) confocal microscopy for deep optical sectioning in tissues.
    Leigh SY; Chen Y; Liu JT
    Biomed Opt Express; 2014 Jun; 5(6):1709-20. PubMed ID: 24940534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating the scanning of a focused beam through scattering media using a numerical solution of Maxwell's equations.
    Elmaklizi A; Schäfer J; Kienle A
    J Biomed Opt; 2014 Jul; 19(7):071404. PubMed ID: 24395650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-grid mesh-based Monte Carlo algorithm for efficient photon transport simulations in complex three-dimensional media.
    Yan S; Tran AP; Fang Q
    J Biomed Opt; 2019 Feb; 24(2):1-4. PubMed ID: 30788914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.