These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 23733138)

  • 1. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles.
    Wu H; Yu G; Pan L; Liu N; McDowell MT; Bao Z; Cui Y
    Nat Commun; 2013; 4():1943. PubMed ID: 23733138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes.
    Liu B; Soares P; Checkles C; Zhao Y; Yu G
    Nano Lett; 2013 Jul; 13(7):3414-9. PubMed ID: 23786580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Li(+)-conductive polymer-embedded nano-Si particles as anode material for advanced Li-ion batteries.
    Chen Y; Zeng S; Qian J; Wang Y; Cao Y; Yang H; Ai X
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3508-12. PubMed ID: 24467155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis of novel Si nanoparticles-graphene composites as high-performance anode materials for Li-ion batteries.
    Zhou M; Pu F; Wang Z; Cai T; Chen H; Zhang H; Guan S
    Phys Chem Chem Phys; 2013 Jul; 15(27):11394-401. PubMed ID: 23740151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-performance lithium storage achieved by chemically binding germanium nanoparticles with N-doped carbon.
    Xiao Y; Cao M
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12922-30. PubMed ID: 24972344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes.
    Sun L; Su T; Xu L; Du HB
    Phys Chem Chem Phys; 2016 Jan; 18(3):1521-5. PubMed ID: 26667776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High capacity, stable silicon/carbon anodes for lithium-ion batteries prepared using emulsion-templated directed assembly.
    Chen Y; Nie M; Lucht BL; Saha A; Guduru PR; Bose A
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4678-83. PubMed ID: 24640970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel pyrolyzed polyaniline-grafted silicon nanoparticles encapsulated in graphene sheets as Li-ion battery anodes.
    Li ZF; Zhang H; Liu Q; Liu Y; Stanciu L; Xie J
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5996-6002. PubMed ID: 24703375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-Aqueous Directed Assembly Strategy for Forming High-Capacity, Stable Silicon/Carbon Anodes for Lithium-Ion Batteries.
    Chen Y; Xu M; Zhang Y; Pan Y; Lucht BL; Bose A
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21391-7. PubMed ID: 26355591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries.
    Yao Y; Huo K; Hu L; Liu N; Cha JJ; McDowell MT; Chu PK; Cui Y
    ACS Nano; 2011 Oct; 5(10):8346-51. PubMed ID: 21974912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries.
    Cui LF; Hu L; Choi JW; Cui Y
    ACS Nano; 2010 Jul; 4(7):3671-8. PubMed ID: 20518567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Conductive Gel Network as an Effective Binder for High-Performance Si Electrodes in Lithium-Ion Batteries.
    Yu X; Yang H; Meng H; Sun Y; Zheng J; Ma D; Xu X
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15961-7. PubMed ID: 26154655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniform yolk-shell structured Si-C nanoparticles as a high performance anode material for the Li-ion battery.
    Li X; Xing Y; Xu J; Deng Q; Shao LH
    Chem Commun (Camb); 2020 Jan; 56(3):364-367. PubMed ID: 31802084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caramel popcorn shaped silicon particle with carbon coating as a high performance anode material for Li-ion batteries.
    He M; Sa Q; Liu G; Wang Y
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11152-8. PubMed ID: 24111737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Integration of a Flame Retardant Quasisolid Gel Polymer Electrolyte with a Si-Based Anode for High-Energy Li-Ion Batteries.
    Liu Q; Feng Y; Liu J; Liu Y; Cui X; He YJ; Nuli Y; Wang J; Yang J
    ACS Nano; 2024 May; 18(20):13384-13396. PubMed ID: 38736184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries.
    Ma X; Liu M; Gan L; Tripathi PK; Zhao Y; Zhu D; Xu Z; Chen L
    Phys Chem Chem Phys; 2014 Mar; 16(9):4135-42. PubMed ID: 24448656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Preinsertion of Lithium: An Approach to Improve the Intrinsic Capacity Retention of Bulk Si Anodes for Li-ion Batteries.
    Ma R; Liu Y; He Y; Gao M; Pan H
    J Phys Chem Lett; 2012 Dec; 3(23):3555-8. PubMed ID: 26290987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ synthesis of C/Cu/ZnO porous hybrids as anode materials for lithium ion batteries.
    Wang Y; Jiang X; Yang L; Jia N; Ding Y
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1525-32. PubMed ID: 24417493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-coated Si nanoparticles dispersed in carbon nanotube networks as anode material for lithium-ion batteries.
    Xue L; Xu G; Li Y; Li S; Fu K; Shi Q; Zhang X
    ACS Appl Mater Interfaces; 2013 Jan; 5(1):21-5. PubMed ID: 23206443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.