These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23733263)

  • 1. Realistic quantum design of silicon quantum dot intermediate band solar cells.
    Hu W; Igarashi M; Lee MY; Li Y; Samukawa S
    Nanotechnology; 2013 Jul; 24(26):265401. PubMed ID: 23733263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of high photocurrent in three-dimensional silicon quantum dot superlattice fabricated by combining bio-template and neutral beam etching for quantum dot solar cells.
    Igarashi M; Hu W; Rahman MM; Usami N; Samukawa S
    Nanoscale Res Lett; 2013 May; 8(1):228. PubMed ID: 23676103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications.
    Sarkhoush M; Rasooli Saghai H; Soofi H
    Front Optoelectron; 2022 Oct; 15(1):42. PubMed ID: 36637679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of formation of mini-bands in two-dimensional array of silicon nanodisks with SiC interlayer for quantum dot solar cells.
    Igarashi M; Budiman MF; Pan W; Hu W; Tamura Y; Syazwan ME; Usami N; Samukawa S
    Nanotechnology; 2013 Jan; 24(1):015301. PubMed ID: 23221349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of power conversion efficiency by a stepwise band-gap structure for silicon quantum dot solar cells.
    Kwak GY; Kim TG; Kim N; Shin JY; Kim KJ
    Nanotechnology; 2020 May; 31(19):195404. PubMed ID: 31986507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure.
    Budiman MF; Hu W; Igarashi M; Tsukamoto R; Isoda T; Itoh KM; Yamashita I; Murayama A; Okada Y; Samukawa S
    Nanotechnology; 2012 Feb; 23(6):065302. PubMed ID: 22248504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional imaging for precise structural control of Si quantum dot networks for all-Si solar cells.
    Kourkoutis LF; Hao X; Huang S; Puthen-Veettil B; Conibeer G; Green MA; Perez-Wurfl I
    Nanoscale; 2013 Aug; 5(16):7499-504. PubMed ID: 23832085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon quantum dot/crystalline silicon solar cells.
    Cho EC; Park S; Hao X; Song D; Conibeer G; Park SC; Green MA
    Nanotechnology; 2008 Jun; 19(24):245201. PubMed ID: 21825804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum efficiency of intermediate-band solar cells based on non-compensated n-p codoped TiO2.
    Wu F; Lan H; Zhang Z; Cui P
    J Chem Phys; 2012 Sep; 137(10):104702. PubMed ID: 22979881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient two-step photocarrier generation in bias-controlled InAs/GaAs quantum dot superlattice intermediate-band solar cells.
    Kada T; Asahi S; Kaizu T; Harada Y; Tamaki R; Okada Y; Kita T
    Sci Rep; 2017 Jul; 7(1):5865. PubMed ID: 28724895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer.
    Kamat PV
    Acc Chem Res; 2012 Nov; 45(11):1906-15. PubMed ID: 22493938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical and electrical characteristics of Si/SiC quantum dot superlattice solar cells with passivation layer of aluminum oxide.
    Tsai YC; Li Y; Samukawa S
    Nanotechnology; 2017 Dec; 28(48):485401. PubMed ID: 28976353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study.
    Liu H; Ren Z; Liu Z; Aberle AG; Buonassisi T; Peters IM
    Opt Express; 2015 Apr; 23(7):A382-90. PubMed ID: 25968803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots.
    Prado SJ; Marques GE; Alcalde AM
    J Phys Condens Matter; 2017 Nov; 29(44):445301. PubMed ID: 28799524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing spin injection efficiency through half-metallic miniband conduction in a spin-filter superlattice.
    Yang YH; Li L; Liu F; Gao ZW; Miao GX
    J Phys Condens Matter; 2016 Feb; 28(5):056003. PubMed ID: 26761786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous enhanced photon capture and carrier generation in Si solar cells using Ge quantum dot photonic nanocrystals.
    Usami N; Pan W; Tayagaki T; Chu ST; Li J; Feng T; Hoshi Y; Kiguchi T
    Nanotechnology; 2012 May; 23(18):185401. PubMed ID: 22498920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid solar cells from MDMO-PPV and silicon nanocrystals.
    Liu CY; Kortshagen UR
    Nanoscale; 2012 Jul; 4(13):3963-8. PubMed ID: 22660893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid-type quantum-dot cosensitized ZnO nanowire solar cell with enhanced visible-light harvesting.
    Kim H; Jeong H; An TK; Park CE; Yong K
    ACS Appl Mater Interfaces; 2013 Jan; 5(2):268-75. PubMed ID: 23231810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Si3AlP: a new promising material for solar cell absorber.
    Yang JH; Zhai Y; Liu H; Xiang H; Gong X; Wei SH
    J Am Chem Soc; 2012 Aug; 134(30):12653-7. PubMed ID: 22769022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of Post-metallisation Processes on the Electrical and Photovoltaic Properties of Si Quantum Dot Solar Cells.
    Di D; Perez-Wurfl I; Gentle A; Kim DH; Hao X; Shi L; Conibeer G; Green MA
    Nanoscale Res Lett; 2010 Aug; 5(11):1762-1767. PubMed ID: 21124642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.