BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23733266)

  • 1. Expression of miR-206 during the initiation of mammary gland development.
    Lee MJ; Yoon KS; Cho KW; Kim KS; Jung HS
    Cell Tissue Res; 2013 Sep; 353(3):425-33. PubMed ID: 23733266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between FGF and Wnt signals and Tbx3 gene expression in mammary gland initiation in mouse embryos.
    Eblaghie MC; Song SJ; Kim JY; Akita K; Tickle C; Jung HS
    J Anat; 2004 Jul; 205(1):1-13. PubMed ID: 15255957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinoic acid signaling and the initiation of mammary gland development.
    Cho KW; Kwon HJ; Shin JO; Lee JM; Cho SW; Tickle C; Jung HS
    Dev Biol; 2012 May; 365(1):259-66. PubMed ID: 22387209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A contrasting function for miR-137 in embryonic mammogenesis and adult breast carcinogenesis.
    Lee JM; Cho KW; Kim EJ; Tang Q; Kim KS; Tickle C; Jung HS
    Oncotarget; 2015 Sep; 6(26):22048-59. PubMed ID: 26215676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lef1 is required for the transition of Wnt signaling from mesenchymal to epithelial cells in the mouse embryonic mammary gland.
    Boras-Granic K; Chang H; Grosschedl R; Hamel PA
    Dev Biol; 2006 Jul; 295(1):219-31. PubMed ID: 16678815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wnt pathway component LEF1 mediates tumor cell invasion and is expressed in human and murine breast cancers lacking ErbB2 (her-2/neu) overexpression.
    Nguyen A; Rosner A; Milovanovic T; Hope C; Planutis K; Saha B; Chaiwun B; Lin F; Imam SA; Marsh JL; Holcombe RF
    Int J Oncol; 2005 Oct; 27(4):949-56. PubMed ID: 16142310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular interactions between Tbx3 and Bmp4 and a model for dorsoventral positioning of mammary gland development.
    Cho KW; Kim JY; Song SJ; Farrell E; Eblaghie MC; Kim HJ; Tickle C; Jung HS
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16788-93. PubMed ID: 17071745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microRNA, miR-101a, controls mammary gland development by regulating cyclooxygenase-2 expression.
    Tanaka T; Haneda S; Imakawa K; Sakai S; Nagaoka K
    Differentiation; 2009 Feb; 77(2):181-7. PubMed ID: 19281778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cripto: a novel epidermal growth factor (EGF)-related peptide in mammary gland development and neoplasia.
    Salomon DS; Bianco C; De Santis M
    Bioessays; 1999 Jan; 21(1):61-70. PubMed ID: 10070255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histone demethylase jumonji AT-rich interactive domain 1B (JARID1B) controls mammary gland development by regulating key developmental and lineage specification genes.
    Zou MR; Cao J; Liu Z; Huh SJ; Polyak K; Yan Q
    J Biol Chem; 2014 Jun; 289(25):17620-33. PubMed ID: 24802759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human chorionic gonadotropin (hCG) up-regulates wnt5b and wnt7b in the mammary gland, and hCGbeta transgenic female mice present with mammary Gland tumors exhibiting characteristics of the Wnt/beta-catenin pathway activation.
    Kuorelahti A; Rulli S; Huhtaniemi I; Poutanen M
    Endocrinology; 2007 Aug; 148(8):3694-703. PubMed ID: 17510243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the MIR155 host gene in physiological and pathological processes.
    Elton TS; Selemon H; Elton SM; Parinandi NL
    Gene; 2013 Dec; 532(1):1-12. PubMed ID: 23246696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of differentially expressed microRNAs during the development of Chinese murine mammary gland.
    Wang C; Li Q
    J Genet Genomics; 2007 Nov; 34(11):966-73. PubMed ID: 18037133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ERalpha-CITED1 co-regulated genes expressed during pubertal mammary gland development: implications for breast cancer prognosis.
    McBryan J; Howlin J; Kenny PA; Shioda T; Martin F
    Oncogene; 2007 Sep; 26(44):6406-19. PubMed ID: 17486082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesenchymal miR-21 regulates branching morphogenesis in murine submandibular gland in vitro.
    Hayashi T; Koyama N; Azuma Y; Kashimata M
    Dev Biol; 2011 Apr; 352(2):299-307. PubMed ID: 21295561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mouse mammary tumor virus-Wnt-1 transgene induces mammary gland hyperplasia and tumorigenesis in mice lacking estrogen receptor-alpha.
    Bocchinfuso WP; Hively WP; Couse JF; Varmus HE; Korach KS
    Cancer Res; 1999 Apr; 59(8):1869-76. PubMed ID: 10213494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-regulated gene networks during mammary cell differentiation are associated with breast cancer.
    Aydoğdu E; Katchy A; Tsouko E; Lin CY; Haldosén LA; Helguero L; Williams C
    Carcinogenesis; 2012 Aug; 33(8):1502-11. PubMed ID: 22562546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signalling pathways implicated in early mammary gland morphogenesis and breast cancer.
    Howard B; Ashworth A
    PLoS Genet; 2006 Aug; 2(8):e112. PubMed ID: 16933995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct expressions of microRNAs that directly target estrogen receptor α in human breast cancer.
    Yoshimoto N; Toyama T; Takahashi S; Sugiura H; Endo Y; Iwasa M; Fujii Y; Yamashita H
    Breast Cancer Res Treat; 2011 Nov; 130(1):331-9. PubMed ID: 21755340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. microRNA-133a regulates the cell cycle and proliferation of breast cancer cells by targeting epidermal growth factor receptor through the EGFR/Akt signaling pathway.
    Cui W; Zhang S; Shan C; Zhou L; Zhou Z
    FEBS J; 2013 Aug; 280(16):3962-74. PubMed ID: 23786162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.