These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23733589)

  • 1. Performance of scientific cameras with different sensor types in measuring dynamic processes in fluorescence microscopy.
    Jung J; Weisenburger S; Albert S; Gilbert DF; Friedrich O; Eulenburg V; Kornhuber J; Groemer TW
    Microsc Res Tech; 2013 Aug; 76(8):835-43. PubMed ID: 23733589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative performance evaluation of a back-illuminated sCMOS camera with 95% QE for super-resolution localization microscopy.
    Wang Y; Zhao L; Hu Z; Wang Y; Zhao Z; Li L; Huang ZL
    Cytometry A; 2017 Dec; 91(12):1175-1183. PubMed ID: 29165899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast and accurate sCMOS noise correction for fluorescence microscopy.
    Mandracchia B; Hua X; Guo C; Son J; Urner T; Jia S
    Nat Commun; 2020 Jan; 11(1):94. PubMed ID: 31901080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic cameras for low-light microscopy.
    Rasnik I; French T; Jacobson K; Berland K
    Methods Cell Biol; 2013; 114():211-41. PubMed ID: 23931509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental comparison of the high-speed imaging performance of an EM-CCD and sCMOS camera in a dynamic live-cell imaging test case.
    Beier HT; Ibey BL
    PLoS One; 2014; 9(1):e84614. PubMed ID: 24404178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing camera performance for quantitative microscopy.
    Lambert TJ; Waters JC
    Methods Cell Biol; 2014; 123():35-53. PubMed ID: 24974021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization-based super-resolution microscopy with an sCMOS camera part II: experimental methodology for comparing sCMOS with EMCCD cameras.
    Long F; Zeng S; Huang ZL
    Opt Express; 2012 Jul; 20(16):17741-59. PubMed ID: 23038326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing and correcting camera noise in back-illuminated sCMOS cameras.
    Zhang Z; Wang Y; Piestun R; Huang ZL
    Opt Express; 2021 Mar; 29(5):6668-6690. PubMed ID: 33726183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study of EM-CCD and CMOS cameras for particle ion trajectory imaging.
    Yamamoto S; Yoshino M; Nakanishi K; Yogo K; Kamada K; Yoshikawa A; Kataoka J
    Appl Radiat Isot; 2024 Feb; 204():111143. PubMed ID: 38101006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pixel-wise programmability enables dynamic high-SNR cameras for high-speed microscopy.
    Zhang J; Newman J; Wang Z; Qian Y; Feliciano-Ramos P; Guo W; Honda T; Chen ZS; Linghu C; Etienne-Cummings R; Fossum E; Boyden E; Wilson M
    Nat Commun; 2024 May; 15(1):4480. PubMed ID: 38802338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applicability of a noncooled video-rated CCD camera for detection of fluorescence in situ hybridization signals.
    Vrolijk J; Sloos WC; Verwoerd NP; Tanke HJ
    Cytometry; 1994 Jan; 15(1):2-11. PubMed ID: 8162822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detectors for fluorescence microscopy.
    Spring KR
    Scanning Microsc; 1991 Mar; 5(1):63-9. PubMed ID: 2052930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast frame scanning camera system for light-sheet microscopy.
    Wu D; Zhou X; Yao B; Li R; Yang Y; Peng T; Lei M; Dan D; Ye T
    Appl Opt; 2015 Oct; 54(29):8632-6. PubMed ID: 26479797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Camera technologies for low light imaging: overview and relative advantages.
    Moomaw B
    Methods Cell Biol; 2013; 114():243-83. PubMed ID: 23931510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromodulation and mitochondrial transport: live imaging in hippocampal neurons over long durations.
    Edelman DB; Owens GC; Chen S
    J Vis Exp; 2011 Jun; (52):. PubMed ID: 21712797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of fixed pattern noise on single molecule localization microscopy.
    Long F; Zeng SQ; Huang ZL
    Phys Chem Chem Phys; 2014 Oct; 16(39):21586-94. PubMed ID: 25189193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple method for quantitative calcium imaging in unperturbed developing neurons.
    Albantakis L; Lohmann C
    J Neurosci Methods; 2009 Nov; 184(2):206-12. PubMed ID: 19682493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of molecular concentration and brightness from fluorescence fluctuation data with an electron multiplied CCD camera.
    Unruh JR; Gratton E
    Biophys J; 2008 Dec; 95(11):5385-98. PubMed ID: 18805922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible method to obtain high sensitivity, low-cost CCD cameras for video microscopy.
    Cinelli AR
    J Neurosci Methods; 1998 Nov; 85(1):33-43. PubMed ID: 9874139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence lifetime imaging microscopy: homodyne technique using high-speed gated image intensifier.
    Szmacinski H; Lakowicz JR; Johnson ML
    Methods Enzymol; 1994; 240():723-48. PubMed ID: 7823855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.