These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 23733715)

  • 1. Numerical analysis of non-Newtonian blood flow and wall shear stress in realistic single, double and triple aorto-coronary bypasses.
    Vimmr J; Jonášová A; Bublík O
    Int J Numer Method Biomed Eng; 2013 Oct; 29(10):1057-81. PubMed ID: 23733715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses.
    Chen J; Lu XY; Wang W
    J Biomech; 2006; 39(11):1983-95. PubMed ID: 16055134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheological effects of blood in a nonplanar distal end-to-side anastomosis.
    Wang QQ; Ping BH; Xu QB; Wang W
    J Biomech Eng; 2008 Oct; 130(5):051009. PubMed ID: 19045516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of Newtonian and non-Newtonian simulations of drug transport in a model drug-eluting stent.
    Wang Z; Sun A; Fan Y; Deng X
    Biorheology; 2012; 49(4):249-59. PubMed ID: 22836079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the relevance of boundary conditions and viscosity models in blood flow simulations in patient-specific aorto-coronary bypass models.
    Jonášová A; Vimmr J
    Int J Numer Method Biomed Eng; 2021 Apr; 37(4):e3439. PubMed ID: 33464717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts.
    Leuprecht A; Perktold K; Prosi M; Berk T; Trubel W; Schima H
    J Biomech; 2002 Feb; 35(2):225-36. PubMed ID: 11784541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel coronary artery bypass graft design of sequential anastomoses.
    Kabinejadian F; Chua LP; Ghista DN; Sankaranarayanan M; Tan YS
    Ann Biomed Eng; 2010 Oct; 38(10):3135-50. PubMed ID: 20496004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of hemodynamics in a complete coronary bypass with venous and arterial grafts and different degrees of stenosis.
    Alizadehghobadi S; Biglari H; Niroomand-Oscuii H; Matin MH
    Comput Methods Biomech Biomed Engin; 2021 Jun; 24(8):883-896. PubMed ID: 33307817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow and wall shear stress in end-to-side and side-to-side anastomosis of venous coronary artery bypass grafts.
    Frauenfelder T; Boutsianis E; Schertler T; Husmann L; Leschka S; Poulikakos D; Marincek B; Alkadhi H
    Biomed Eng Online; 2007 Sep; 6():35. PubMed ID: 17897460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of the non-Newtonian properties of blood on blood-hammer through the posterior cerebral artery.
    Tazraei P; Riasi A; Takabi B
    Math Biosci; 2015 Jun; 264():119-27. PubMed ID: 25865933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element computation of magneto-hemodynamic flow and heat transfer in a bifurcated artery with saccular aneurysm using the Carreau-Yasuda biorheological model.
    Dubey A; B V; Bég OA; Gorla RSR
    Microvasc Res; 2021 Nov; 138():104221. PubMed ID: 34271062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro measurements of velocity and wall shear stress in a novel sequential anastomotic graft design model under pulsatile flow conditions.
    Kabinejadian F; Ghista DN; Su B; Nezhadian MK; Chua LP; Yeo JH; Leo HL
    Med Eng Phys; 2014 Oct; 36(10):1233-45. PubMed ID: 25103345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of blood flow in a sequential aorto-coronary bypass graft model.
    S M; Ghista DN; Chua LP; Seng TY
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():875-8. PubMed ID: 17945605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical investigations of pulsatile flow in stenosed artery.
    Bit A; Chattopadhyay H
    Acta Bioeng Biomech; 2014; 16(4):33-44. PubMed ID: 25598070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of graft-host diameter ratio on the hemodynamics of CABG.
    Qiao A; Liu Y
    Biomed Mater Eng; 2006; 16(3):189-201. PubMed ID: 16518018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.