These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 23733891)
1. Genetic selection for constitutively trimerized human HSF1 mutants identifies a role for coiled-coil motifs in DNA binding. Neef DW; Jaeger AM; Thiele DJ G3 (Bethesda); 2013 Aug; 3(8):1315-24. PubMed ID: 23733891 [TBL] [Abstract][Full Text] [Related]
2. Modulation of human heat shock factor trimerization by the linker domain. Liu PC; Thiele DJ J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080 [TBL] [Abstract][Full Text] [Related]
3. Regulation of the Hsf1-dependent transcriptome via conserved bipartite contacts with Hsp70 promotes survival in yeast. Peffer S; Gonçalves D; Morano KA J Biol Chem; 2019 Aug; 294(32):12191-12202. PubMed ID: 31239354 [TBL] [Abstract][Full Text] [Related]
4. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Raitt DC; Johnson AL; Erkine AM; Makino K; Morgan B; Gross DS; Johnston LH Mol Biol Cell; 2000 Jul; 11(7):2335-47. PubMed ID: 10888672 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of the full length and mutated heat shock factor 1 in human cells. Herbomel G; Kloster-Landsberg M; Folco EG; Col E; Usson Y; Vourc'h C; Delon A; Souchier C PLoS One; 2013; 8(7):e67566. PubMed ID: 23861773 [TBL] [Abstract][Full Text] [Related]
6. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Zuo J; Baler R; Dahl G; Voellmy R Mol Cell Biol; 1994 Nov; 14(11):7557-68. PubMed ID: 7935471 [TBL] [Abstract][Full Text] [Related]
7. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. Chou SD; Prince T; Gong J; Calderwood SK PLoS One; 2012; 7(6):e39679. PubMed ID: 22768106 [TBL] [Abstract][Full Text] [Related]
8. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF. Liu XD; Liu PC; Santoro N; Thiele DJ EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828 [TBL] [Abstract][Full Text] [Related]
9. RhoA Activation Sensitizes Cells to Proteotoxic Stimuli by Abrogating the HSF1-Dependent Heat Shock Response. Meijering RA; Wiersma M; van Marion DM; Zhang D; Hoogstra-Berends F; Dijkhuis AJ; Schmidt M; Wieland T; Kampinga HH; Henning RH; Brundel BJ PLoS One; 2015; 10(7):e0133553. PubMed ID: 26193369 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Hietakangas V; Ahlskog JK; Jakobsson AM; Hellesuo M; Sahlberg NM; Holmberg CI; Mikhailov A; Palvimo JJ; Pirkkala L; Sistonen L Mol Cell Biol; 2003 Apr; 23(8):2953-68. PubMed ID: 12665592 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional regulation and binding of heat shock factor 1 and heat shock factor 2 to 32 human heat shock genes during thermal stress and differentiation. Trinklein ND; Chen WC; Kingston RE; Myers RM Cell Stress Chaperones; 2004 Mar; 9(1):21-8. PubMed ID: 15270074 [TBL] [Abstract][Full Text] [Related]
12. Heat shock factor 1 is inactivated by amino acid deprivation. Hensen SM; Heldens L; van Enckevort CM; van Genesen ST; Pruijn GJ; Lubsen NH Cell Stress Chaperones; 2012 Nov; 17(6):743-55. PubMed ID: 22797943 [TBL] [Abstract][Full Text] [Related]
13. Mitochondrial SSBP1 protects cells from proteotoxic stresses by potentiating stress-induced HSF1 transcriptional activity. Tan K; Fujimoto M; Takii R; Takaki E; Hayashida N; Nakai A Nat Commun; 2015 Mar; 6():6580. PubMed ID: 25762445 [TBL] [Abstract][Full Text] [Related]
14. Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1. Kim HJ; Lee JJ; Cho JH; Jeong J; Park AY; Kang W; Lee KJ J Biol Chem; 2017 Aug; 292(31):12801-12812. PubMed ID: 28592492 [TBL] [Abstract][Full Text] [Related]
15. Heat shock transcription factor 1 opens chromatin structure of interleukin-6 promoter to facilitate binding of an activator or a repressor. Inouye S; Fujimoto M; Nakamura T; Takaki E; Hayashida N; Hai T; Nakai A J Biol Chem; 2007 Nov; 282(45):33210-7. PubMed ID: 17766920 [TBL] [Abstract][Full Text] [Related]
16. Genetic inactivation of essential Ciccarelli M; Masser AE; Kaimal JM; Planells J; Andréasson C Mol Biol Cell; 2023 Sep; 34(10):ar101. PubMed ID: 37467033 [TBL] [Abstract][Full Text] [Related]
17. Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome. Pincus D; Anandhakumar J; Thiru P; Guertin MJ; Erkine AM; Gross DS Mol Biol Cell; 2018 Dec; 29(26):3168-3182. PubMed ID: 30332327 [TBL] [Abstract][Full Text] [Related]
18. Regulation of HSF1 transcriptional complexes under proteotoxic stress: Mechanisms of heat shock gene transcription involve the stress-induced HSF1 complex formation, changes in chromatin states, and formation of phase-separated condensates: Mechanisms of heat shock gene transcription involve the stress-induced HSF1 complex formation, changes in chromatin states, and formation of phase-separated condensates. Fujimoto M; Takii R; Nakai A Bioessays; 2023 Jul; 45(7):e2300036. PubMed ID: 37092382 [TBL] [Abstract][Full Text] [Related]
19. Agonist-activated glucocorticoid receptor inhibits binding of heat shock factor 1 to the heat shock protein 70 promoter in vivo. Wadekar SA; Li D; Sánchez ER Mol Endocrinol; 2004 Mar; 18(3):500-8. PubMed ID: 14673132 [TBL] [Abstract][Full Text] [Related]
20. Induction of heat shock proteins by hyperthermia and noise overstimulation in hsf1 -/- mice. Gong TW; Fairfield DA; Fullarton L; Dolan DF; Altschuler RA; Kohrman DC; Lomax MI J Assoc Res Otolaryngol; 2012 Feb; 13(1):29-37. PubMed ID: 21932106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]