These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23734047)

  • 1. Stardust silicate nucleation kick-started by SiO+TiO₂.
    Goumans TP; Bromley ST
    Philos Trans A Math Phys Eng Sci; 2013 Jul; 371(1994):20110580. PubMed ID: 23734047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the nucleation of dust in oxygen-rich stellar outflows.
    Plane JM
    Philos Trans A Math Phys Eng Sci; 2013 Jul; 371(1994):20120335. PubMed ID: 23734055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cluster Beam Study of (MgSiO
    Mariñoso Guiu J; Ghejan BA; Bernhardt TM; Bakker JM; Lang SM; Bromley ST
    ACS Earth Space Chem; 2022 Oct; 6(10):2465-2470. PubMed ID: 36303718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-temperature crystallization of silicate dust in circumstellar disks.
    Molster FJ; Yamamura I; Waters LB; Tielens AG; de Graauw T; de Jong T; de Koter A; Malfait K; van den Ancker ME; van Winckel H; Voors RH; Waelkens C
    Nature; 1999 Oct; 401(6753):563-5. PubMed ID: 10524623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Master equation modelling of non-equilibrium chemistry in stellar outflows.
    Plane JMC; Robertson SH
    Faraday Discuss; 2022 Oct; 238(0):461-474. PubMed ID: 35776062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Samples of stars beyond the solar system: silicate grains in interplanetary dust.
    Messenger S; Keller LP; Stadermann FJ; Walker RM; Zinner E
    Science; 2003 Apr; 300(5616):105-8. PubMed ID: 12610229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of ancient silicate stardust in a meteorite.
    Nguyen AN; Zinner E
    Science; 2004 Mar; 303(5663):1496-9. PubMed ID: 15001773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallofullerene and fullerene formation from condensing carbon gas under conditions of stellar outflows and implication to stardust.
    Dunk PW; Adjizian JJ; Kaiser NK; Quinn JP; Blakney GT; Ewels CP; Marshall AG; Kroto HW
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):18081-6. PubMed ID: 24145444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lyman-α driven molecule formation on SiO2 surfaces-connection to astrochemistry on dust grains in the interstellar medium.
    Rajappan M; Yuan C; Yates JT
    J Chem Phys; 2011 Feb; 134(6):064315. PubMed ID: 21322688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of surface structure on H4SiO4 oligomerization on rutile and amorphous TiO2 surfaces: an ATR-IR and synchrotron XPS study.
    Song Y; Swedlund PJ; McIntosh GJ; Cowie BC; Waterhouse GI; Metson JB
    Langmuir; 2012 Dec; 28(49):16890-9. PubMed ID: 23145785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three milieux for interstellar chemistry: gas, dust, and ice.
    Herbst E
    Phys Chem Chem Phys; 2014 Feb; 16(8):3344-59. PubMed ID: 24220255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of metals on (star)dust chemistry: a laboratory astrophysics approach.
    Bérard R; Makasheva K; Demyk K; Simon A; Reyes DN; Mastrorocco F; Sabbah H; Joblin C
    Front Astron Space Sci; 2021 Mar; 8():. PubMed ID: 33850840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From SiO molecules to silicates in circumstellar space: atomic structures, growth patterns, and optical signatures of SinOm clusters.
    Reber AC; Paranthaman S; Clayborne PA; Khanna SN; Castleman AW
    ACS Nano; 2008 Aug; 2(8):1729-37. PubMed ID: 19206378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared spectroscopy of comet 81P/Wild 2 samples returned by Stardust.
    Keller LP; Bajt S; Baratta GA; Borg J; Bradley JP; Brownlee DE; Busemann H; Brucato JR; Burchell M; Colangeli L; d'Hendecourt L; Djouadi Z; Ferrini G; Flynn G; Franchi IA; Fries M; Grady MM; Graham GA; Grossemy F; Kearsley A; Matrajt G; Nakamura-Messenger K; Mennella V; Nittler L; Palumbo ME; Stadermann FJ; Tsou P; Rotundi A; Sandford SA; Snead C; Steele A; Wooden D; Zolensky M
    Science; 2006 Dec; 314(5806):1728-31. PubMed ID: 17170293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short range order at the amorphous TiO(2)-water interface probed by silicic acid adsorption and interfacial oligomerization: an ATR-IR and 29Si MAS-NMR study.
    Swedlund PJ; Song Y; Zujovic ZD; Nieuwoudt MK; Hermann A; McIntosh GJ
    J Colloid Interface Sci; 2012 Feb; 368(1):447-55. PubMed ID: 22153337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An evolutionary system of mineralogy. Part I: Stellar mineralogy (>13 to 4.6 Ga).
    Hazen RM; Morrison SM
    Am Mineral; 2020 Apr; 105(5):627-651. PubMed ID: 33867541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dust formation and wind acceleration around the aluminum oxide-rich AGB star W Hydrae.
    Takigawa A; Kamizuka T; Tachibana S; Yamamura I
    Sci Adv; 2017 Nov; 3(11):eaao2149. PubMed ID: 29109978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An overview of the cosmic dust analogue material production in reduced gravity: the STARDUST experience.
    Ferguson F; Lilleleht LU; Nuth J; Stephens JR; Bussoletti E; Colangeli L; Mennella V; Dell'Aversana P; Mirra C
    Microgravity Q; 1993; 3(2-4):97-100. PubMed ID: 11541443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 'dry' condensation origin for circumstellar carbonates.
    Toppani A; Robert F; Libourel G; de Donato P; Barres O; d'Hendecourt L; Ghanbaja J
    Nature; 2005 Oct; 437(7062):1121-4. PubMed ID: 16237436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. INFRA-ICE: An ultra-high vacuum experimental station for laboratory astrochemistry.
    Santoro G; Sobrado JM; Tajuelo-Castilla G; Accolla M; Martínez L; Azpeitia J; Lauwaet K; Cernicharo J; Ellis GJ; Martín-Gago JÁ
    Rev Sci Instrum; 2020 Dec; 91(12):124101. PubMed ID: 33379937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.