These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 23734147)

  • 1. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria.
    Zeng X; Lin J
    Front Microbiol; 2013; 4():128. PubMed ID: 23734147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Progress in regulatory mechanism for inducing β-lactamase in Gram-negative bacteria].
    Xu C; Zhang T; Cai J; Yu Z; Qiu J; Yin J
    Sheng Wu Gong Cheng Xue Bao; 2018 Aug; 34(8):1288-1296. PubMed ID: 30152214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity and regulation of intrinsic β-lactamases from non-fermenting and other Gram-negative opportunistic pathogens.
    Juan C; Torrens G; González-Nicolau M; Oliver A
    FEMS Microbiol Rev; 2017 Nov; 41(6):781-815. PubMed ID: 29029112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. beta-Lactamase induction in gram-negative bacteria is intimately linked to peptidoglycan recycling.
    Normark S
    Microb Drug Resist; 1995; 1(2):111-4. PubMed ID: 9158742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas aeruginosa β-lactamase induction requires two permeases, AmpG and AmpP.
    Kong KF; Aguila A; Schneper L; Mathee K
    BMC Microbiol; 2010 Dec; 10():328. PubMed ID: 21192796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible beta-lactam resistance in gram-negative bacteria.
    Jacobs C; Frère JM; Normark S
    Cell; 1997 Mar; 88(6):823-32. PubMed ID: 9118225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of AmpC-Driven β-Lactam Resistance in Pseudomonas aeruginosa: Different Pathways, Different Signaling.
    Torrens G; Hernández SB; Ayala JA; Moya B; Juan C; Cava F; Oliver A
    mSystems; 2019 Dec; 4(6):. PubMed ID: 31796566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial cell wall recycling provides cytosolic muropeptides as effectors for beta-lactamase induction.
    Jacobs C; Huang LJ; Bartowsky E; Normark S; Park JT
    EMBO J; 1994 Oct; 13(19):4684-94. PubMed ID: 7925310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the murein precursor UDP-N-acetylmuramyl-L-Ala-gamma-D-Glu-meso-diaminopimelic acid-D-Ala-D-Ala in repression of beta-lactamase induction in cell division mutants.
    Uehara T; Park JT
    J Bacteriol; 2002 Aug; 184(15):4233-9. PubMed ID: 12107141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of Lytic Transglycosylases Increases Beta-Lactam Resistance in
    Yin J; Sun Y; Sun Y; Yu Z; Qiu J; Gao H
    Front Microbiol; 2018; 9():13. PubMed ID: 29403465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of AmpC Derepression on Fitness and Virulence: the Mechanism or the Pathway?
    Pérez-Gallego M; Torrens G; Castillo-Vera J; Moya B; Zamorano L; Cabot G; Hultenby K; Albertí S; Mellroth P; Henriques-Normark B; Normark S; Oliver A; Juan C
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dependence of induction of enterobacterial AmpC beta-lactamase on cell-wall peptidoglycan, as demonstrated in Proteus mirabilis and its wall-less protoplast L-form.
    Tölg M; Schmidt H; Schierl R; Datz M; Martin HH
    J Gen Microbiol; 1993 Nov; 139(11):2715-22. PubMed ID: 8277255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct roles of major peptidoglycan recycling enzymes in β-Lactamase production in Shewanella oneidensis.
    Yin J; Mao Y; Ju L; Jin M; Sun Y; Jin S; Gao H
    Antimicrob Agents Chemother; 2014 Nov; 58(11):6536-43. PubMed ID: 25136029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial cell-wall recycling.
    Johnson JW; Fisher JF; Mobashery S
    Ann N Y Acad Sci; 2013 Jan; 1277(1):54-75. PubMed ID: 23163477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae.
    Hanson ND; Sanders CC
    Curr Pharm Des; 1999 Nov; 5(11):881-94. PubMed ID: 10539994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug Discovery in the Field of β-Lactams: An Academic Perspective.
    Jacobs LMC; Consol P; Chen Y
    Antibiotics (Basel); 2024 Jan; 13(1):. PubMed ID: 38247618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of Penicillin Binding Protein 2 Inactivation on β-Lactamase Expression and Muropeptide Profile in
    Huang YW; Wang Y; Lin Y; Lin C; Lin YT; Hsu CC; Yang TC
    mSystems; 2017; 2(4):. PubMed ID: 28861525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interference with murein turnover has no effect on growth but reduces beta-lactamase induction in Escherichia coli.
    Kraft AR; Prabhu J; Ursinus A; Höltje JV
    J Bacteriol; 1999 Dec; 181(23):7192-8. PubMed ID: 10572120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanisms of resistance in Enterobacteriaceae towards beta-lactamase antibiotics].
    Susić E
    Acta Med Croatica; 2004; 58(4):307-12. PubMed ID: 15700687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PBP1a/LpoA but not PBP1b/LpoB are involved in regulation of the major β-lactamase gene blaA in Shewanella oneidensis.
    Yin J; Sun Y; Mao Y; Jin M; Gao H
    Antimicrob Agents Chemother; 2015; 59(6):3357-64. PubMed ID: 25824223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.