BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 23734565)

  • 1. Responses of aquatic insects to Cu and Zn in stream microcosms: understanding differences between single species tests and field responses.
    Clements WH; Cadmus P; Brinkman SF
    Environ Sci Technol; 2013 Jul; 47(13):7506-13. PubMed ID: 23734565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioaccumulation and Toxicity of Cadmium, Copper, Nickel, and Zinc and Their Mixtures to Aquatic Insect Communities.
    Mebane CA; Schmidt TS; Miller JL; Balistrieri LS
    Environ Toxicol Chem; 2020 Apr; 39(4):812-833. PubMed ID: 31916284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional responses of periphyton and macroinvertebrate communities to ferric Fe, Cu, and Zn in stream mesocosms.
    Cadmus P; Guasch H; Herdrich AT; Bonet B; Urrea G; Clements WH
    Environ Toxicol Chem; 2018 May; 37(5):1320-1329. PubMed ID: 29278661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Larval aquatic insect responses to cadmium and zinc in experimental streams.
    Mebane CA; Schmidt TS; Balistrieri LS
    Environ Toxicol Chem; 2017 Mar; 36(3):749-762. PubMed ID: 27541712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sensitivity of aquatic insects to divalent metals: a comparative analysis of laboratory and field data.
    Brix KV; DeForest DK; Adams WJ
    Sci Total Environ; 2011 Sep; 409(20):4187-97. PubMed ID: 21820156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caddisflies as biomonitors identifying thresholds of toxic metal bioavailability that affect the stream benthos.
    Rainbow PS; Hildrew AG; Smith BD; Geatches T; Luoma SN
    Environ Pollut; 2012 Jul; 166():196-207. PubMed ID: 22513001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects.
    Scheibener SA; Richardi VS; Buchwalter DB
    Aquat Toxicol; 2016 Feb; 171():20-9. PubMed ID: 26730725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Context-Dependent Responses of Aquatic Insects to Metals and Metal Mixtures: A Quantitative Analysis Summarizing 24 Yr of Stream Mesocosm Experiments.
    Clements WH; Cadmus P; Kotalik CJ; Wolff BA
    Environ Toxicol Chem; 2019 Nov; 38(11):2486-2496. PubMed ID: 31403735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute toxicity of copper, lead, cadmium, and zinc to early life stages of white sturgeon (Acipenser transmontanus) in laboratory and Columbia River water.
    Vardy DW; Santore R; Ryan A; Giesy JP; Hecker M
    Environ Sci Pollut Res Int; 2014; 21(13):8176-87. PubMed ID: 24920427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute toxicity of aqueous copper, cadmium, and zinc to the mayfly Rhithrogena hageni.
    Brinkman SF; Johnston WD
    Arch Environ Contam Toxicol; 2008 Apr; 54(3):466-72. PubMed ID: 17917759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas).
    Meyer JS; Boese CJ; Morris JM
    Aquat Toxicol; 2007 Aug; 84(2):268-78. PubMed ID: 17659358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibrating biomonitors to ecological disturbance: a new technique for explaining metal effects in natural waters.
    Luoma SN; Cain DJ; Rainbow PS
    Integr Environ Assess Manag; 2010 Apr; 6(2):199-209. PubMed ID: 20821686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of copper, cadmium, and zinc on the hatching success of brine shrimp (Artemia franciscana).
    Brix KV; Gerdes RM; Adams WJ; Grosell M
    Arch Environ Contam Toxicol; 2006 Nov; 51(4):580-3. PubMed ID: 16897274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium uptake in aquatic insects: influences of phylogeny and metals (Cd and Zn).
    Poteat MD; Buchwalter DB
    J Exp Biol; 2014 Apr; 217(Pt 7):1180-6. PubMed ID: 24311815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake.
    Franklin NM; Stauber JL; Lim RP; Petocz P
    Environ Toxicol Chem; 2002 Nov; 21(11):2412-22. PubMed ID: 12389921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probabilistic ecological risk assessment of heavy metals using the sensitivity of resident organisms in four Korean rivers.
    Park J; Lee S; Lee E; Noh H; Seo Y; Lim H; Shin H; Lee I; Jung H; Na T; Kim SD
    Ecotoxicol Environ Saf; 2019 Nov; 183():109483. PubMed ID: 31362159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of antioxidant defenses to Cu and Zn stress in two aquatic fungi.
    Azevedo MM; Carvalho A; Pascoal C; Rodrigues F; Cássio F
    Sci Total Environ; 2007 May; 377(2-3):233-43. PubMed ID: 17391733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of humic acid during concurrent chronic waterborne exposure of rainbow trout (Oncorhynchus mykiss) to copper, cadmium and zinc.
    Kamunde C; MacPhail R
    Ecotoxicol Environ Saf; 2011 Mar; 74(3):259-69. PubMed ID: 20970854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential tolerance of two Gammarus pulex populations transplanted from different metallogenic regions to a polymetal gradient.
    Khan FR; Irving JR; Bury NR; Hogstrand C
    Aquat Toxicol; 2011 Mar; 102(1-2):95-103. PubMed ID: 21371617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivities of Australian and New Zealand amphipods to copper and zinc in waters and metal-spiked sediments.
    King CK; Gale SA; Hyne RV; Stauber JL; Simpson SL; Hickey CW
    Chemosphere; 2006 Jun; 63(9):1466-76. PubMed ID: 16289287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.